Ultralytics YOLOv8 是由 Ultralytics 开发的一个前沿的 SOTA 模型。它在以前成功的 YOLO 版本基础上,引入了新的功能和改进,进一步提升了其性能和灵活性。YOLOv8 基于快速、准确和易于使用的设计理念,使其成为广泛的目标检测、图像分割和图像分类任务的绝佳选择。YOLOv5 自从 2020 年发布以来,一直是没有论文的。而 YOLOv8(YOLOv5团队)这次首次承认将先发布 arXiv 版本的论文(目前还在火速撰写中)。
1.环境安装
YOLOv8 代码链接:
GitHub - ultralytics/ultralytics: YOLOv8 🚀 in PyTorch > ONNX > CoreML > TFLite
yolov8是一个工程性的代码,训练、测试和配置都封装得很便捷,下载源码打开后运行以下命令安装需要的环境依赖
pip install -r requirements.txt
通过pip list命令查看torch版本,需要注意系统默认安装最新的cpu版的pytorch,需要自己安装GPU版的PyTorch: Previous PyTorch Versions | PyTorch
环境安装好后运行v8文件夹的predict.py测试一下效果,控制台没有报错且显示带+cu11x的torch版本和GPU型号,说明环境安装没问题。
2. 制作数据集
yolov8提供的有已经制作好的完整的数据集,运行相关脚本可以直接下载现成的数据集。
本教程以coco-128数据集为例,在coco数据集80个类基础上,再训练一个自己的类(饮水机)。首先,使用labelme标注,标注好后,用以下labelme2yoloseg.py代码生成yolo数据集格式 。
'''
Created on Nov 2, 2022
@author: LULU LI
'''
import logging
import os
import string
import sys
import argparse
import shutil
import math
from collections import OrderedDict
import json
import cv2
import PIL.Image
from sklearn.model_selection import train_test_split
from labelme import utils
label_idx_map = {'water_dispenser':80}
class Labelme2YOLO(object):
def __init__(self, json_dir):
self._json_dir = json_dir
self._label_id_map = label_idx_map
def _make_train_val_dir(self):
self._label_dir_path = os.path.join(self._json_dir,
'YOLODataset/labels/')
self._image_dir_path = os.path.join(self._json_dir,
'YOLODataset/images/')
for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
os.path.join(self._label_dir_path + 'val/'),
os.path.join(self._image_dir_path + 'train/'),
os.path.join(self._image_dir_path + 'val/')):
if os.path.exists(yolo_path):
shutil.rmtree(yolo_path)
os.makedirs(yolo_path)
def _get_label_id_map(self, json_dir):
# label_set = set()
#
# for file_name in os.listdir(json_dir):
# if file_name.endswith('json'):
# json_path = os.path.join(json_dir, file_name)
# data = json.load(open(json_path))
# for shape in data['shapes']:
# label_set.add(shape['label'].rstrip(string.digits).rstrip( '_' ).rstrip(string.digits))
return [(label, label_id) for label, label_id in label_idx_map]
def _train_test_split(self, folders, json_names, val_size):
if len(folders) > 0 and 'train' in folders and 'val' in folders:
train_folder = os.path.join(self._json_dir, 'train/')
train_json_names = [train_sample_name + '.json' \
for train_sample_name in os.listdir(train_folder) \
if os.path.isdir(os.path.join(train_folder, train_sample_name))]
val_folder = os.path.join(self._json_dir, 'val/')
val_json_names = [val_sample_name + '.json' \
for val_sample_name in os.listdir(val_folder) \
if os.path.isdir(os.path.join(val_folder, val_sample_name))]
return train_json_names, val_json_names
train_idxs, val_idxs = train_test_split(range(len(json_names)),
test_size=val_size)
train_json_names = [json_names[train_idx] for train_idx in train_idxs]
val_json_names = [json_names[val_idx] for val_idx in val_idxs]
return train_json_names, val_json_names
def convert(self, val_size):
json_names = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isfile(os.path.join(self._json_dir, file_name)) and \
file_name.endswith('.json')]
folders = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isdir(os.path.join(self._json_dir, file_name))]
train_json_names, val_json_names = self._train_test_split(folders, json_names, val_size)
self._make_train_val_dir()
# convert labelme object to yolo format object, and save them to files
# also get image from labelme json file and save them under images folder
for target_dir, json_names in zip(('train/', 'val/'),
(train_json_names, val_json_names)):
for json_name in json_names:
json_path = os.path.join(self._json_dir, json_name)
json_data = json.load(open(json_path))
print('Converting %s for %s ...' % (json_name, target_dir.replace('/', '')))
img_path = self._save_yolo_image(json_data,
json_name,
self._image_dir_path,
target_dir)
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
self._save_yolo_label(json_name,
self._label_dir_path,
target_dir,
yolo_obj_list)
print('Generating dataset.yaml file ...')
self._save_dataset_yaml()
def convert_one(self, json_name):
json_path = os.path.join(self._json_dir, json_name)
json_data = json.load(open(json_path))
print('Converting %s ...' % json_name)
img_path = self._save_yolo_image(json_data, json_name,
self._json_dir, '')
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
self._save_yolo_label(json_name, self._json_dir,
'', yolo_obj_list)
def _get_yolo_object_list(self, json_data, img_path):
yolo_obj_list = []
img_h, img_w, _ = cv2.imread(img_path).shape
for shape in json_data['shapes']:
# labelme circle shape is different from others
# it only has 2 points, 1st is circle center, 2nd is drag end point
try:
if shape['shape_type'] == 'circle':
yolo_obj = self._get_circle_shape_yolo_object(shape, img_h, img_w)
elif shape['shape_type'] == 'polygon': # lll
yolo_obj = self._get_polygon_shape_yolo_object(shape, img_h, img_w)
yolo_obj_list.append(yolo_obj)
elif shape['shape_type'] == 'rectangle':
yolo_obj = self._get_other_shape_yolo_object(shape, img_h, img_w)
except Exception as e:
logging.Logger(e)
return yolo_obj_list
def _get_circle_shape_yolo_object(self, shape, img_h, img_w):
obj_center_x, obj_center_y = shape['points'][0]
radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 +
(obj_center_y - shape['points'][1][1]) ** 2)
obj_w = 2 * radius
obj_h = 2 * radius
yolo_center_x = round(float(obj_center_x / img_w), 6)
yolo_center_y = round(float(obj_center_y / img_h), 6)
yolo_w = round(float(obj_w / img_w), 6)
yolo_h = round(float(obj_h / img_h), 6)
label_id = self._label_id_map[shape['label'].rstrip(string.digits).rstrip( '_' ).rstrip(string.digits)]
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
def _get_other_shape_yolo_object(self, shape, img_h, img_w):
def __get_object_desc(obj_port_list):
__get_dist = lambda int_list: max(int_list) - min(int_list)
x_lists = [port[0] for port in obj_port_list]
y_lists = [port[1] for port in obj_port_list]
return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)
obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])
yolo_center_x = round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
yolo_w = round(float(obj_w / img_w), 6)
yolo_h = round(float(obj_h / img_h), 6)
label_id = self._label_id_map[shape['label'].rstrip(string.digits).rstrip( '_' ).rstrip(string.digits)]
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
# compute polygon points # add by lll
def _get_polygon_shape_yolo_object(self, shape, img_h, img_w):
def __get_points_list(obj_port_list):
x_lists = [port[0] for port in obj_port_list]
y_lists = [port[1] for port in obj_port_list]
return x_lists, y_lists
label_id_polygon_points = []
label_id = self._label_id_map[shape['label'].rstrip(string.digits).rstrip( '_' ).rstrip(string.digits)]
label_id_polygon_points.append(label_id)
x_lists, y_lists = __get_points_list(shape['points'])
for x_point, y_point in zip(x_lists, y_lists):
yolo_x = round(float(x_point / img_w), 6)
label_id_polygon_points.append(yolo_x)
yolo_y = round(float(y_point / img_h), 6)
label_id_polygon_points.append(yolo_y)
return tuple(label_id_polygon_points)
def _save_yolo_label(self, json_name, label_dir_path, target_dir, yolo_obj_list):
txt_path = os.path.join(label_dir_path,
target_dir,
json_name.replace('.json', '.txt'))
with open(txt_path, 'w+') as f: # lll
for yolo_obj_idx, yolo_obj in enumerate(yolo_obj_list):
if len(yolo_obj) > 5: # lll
for point in yolo_obj:
point_line = '%s ' % point
f.write(point_line)
f.write('\n')
else:
yolo_obj_line = '%s %s %s %s %s\n' % yolo_obj \
if yolo_obj_idx + 1 != len(yolo_obj_list) else \
'%s %s %s %s %s' % yolo_obj
f.write(yolo_obj_line)
def _save_yolo_image(self, json_data, json_name, image_dir_path, target_dir):
img_name = json_name.replace('.json', '.png')
img_path = os.path.join(image_dir_path, target_dir, img_name)
I = PIL.Image.open(os.path.join(os.path.join(image_dir_path,"../../"),json_data['imagePath']))
I.save(img_path)
# if not os.path.exists(img_path):
# img = utils.img_b64_to_arr(json_data['imageData'])
# PIL.Image.fromarray(img).save(img_path)
return img_path
def _save_dataset_yaml(self):
yaml_path = os.path.join(self._json_dir, 'YOLODataset/', 'dataset.yaml')
with open(yaml_path, 'w+') as yaml_file:
yaml_file.write('train: %s\n' % \
os.path.join(self._image_dir_path, 'train/'))
yaml_file.write('val: %s\n\n' % \
os.path.join(self._image_dir_path, 'val/'))
yaml_file.write('nc: %i\n\n' % len(self._label_id_map))
names_str = ''
for label, _ in self._label_id_map.items():
names_str += "'%s', " % label
names_str = names_str.rstrip(', ')
yaml_file.write('names: [%s]' % names_str)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--json_dir', type=str, default='E:/datasets/background/training_data/segment',
help='Please input the path of the labelme json files.')
parser.add_argument('--val_size', type=float, nargs='?', default=0.1,
help='Please input the validation dataset size, for example 0.1 ')
parser.add_argument('--json_name', type=str, nargs='?', default=None,
help='If you put json name, it would convert only one json file to YOLO.')
args = parser.parse_args(sys.argv[1:])
convertor = Labelme2YOLO(args.json_dir)
if args.json_name is None:
convertor.convert(val_size=args.val_size)
else:
convertor.convert_one(args.json_name)
转化成功后YOLODataset下会生成images和labels两个目录,分别是图像和标签。
3.修改配置
3.1 数据集配置
复制一份coco128-seg.yaml,作为自己的配置文件,将train和val路径修改为图片images下训练集和验证集路径,不用指定label路径,读取数据集的时候label路径是将图片路径中的‘images’替换成‘labels’获取的
,
3.2 修改类别数
3.3 修改default配置
根据自己实际需要修改,我这里只修改训练轮数和batch-size,其他的用的默认的
4.训练
设置好配置文件和模型对应的路径,即可进行训练,控制台打印训练进度。通过tensorboard可以查看具体训练效果,命令行输入:tensorboard --logdir .\runs\segment\,浏览器打开输出的链接。
文章来源地址https://www.toymoban.com/news/detail-443505.html
5.测试
将需要测试的图片或者视频放在assets目录下,指定好权重和assets路径
测试效果如下
文章来源:https://www.toymoban.com/news/detail-443505.html
到了这里,关于YOLOv8训练自己的分割数据集的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!