MobileViT神经网络模型

这篇具有很好参考价值的文章主要介绍了MobileViT神经网络模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

MobileViT神经网络模型

  • 官方源码(Pytorch实现) : https://github.com/apple/ml-cvnets
  •  原文链接:https://blog.csdn.net/qq_37541097/article/details/126715733

  • 霹雳吧啦Wz从ml-evnets仓库中剥离的代码: deep-learning-for-image-processing/pytorch_classification/MobileViT at master · WZMIAOMIAO/deep-learning-for-image-processing · GitHub
  • MobileViT对应博文: MobileViT模型简介_太阳花的小绿豆的博客-CSDN博客

1. Transformer模型存在的问题

  • Transformer参数多,算力要求高,很难部署到移动端。
  • Transformer缺少空间偏置。计算某个token的attention时如果将其他token的顺序打乱对最终结果没有任何影响。但在图像数据中,空间信息是很重要且有意义的。为了解决这个问题,常见的方法是加上位置偏置(position bias)/位置编码,比如Vision Transformer中使用的绝对位置偏置,Swin Transformer中的相对位置偏置,加上位置偏置虽然在一定程度上解决了空间位置的信息丢失的问题,但又引入了一个新的问题。迁移到别的任务上时,位置偏执信息往往需要调整。
  • Transformer迁移到其他任务(输入图像分辨率发生改变)比较繁琐
  • Transformer模型很难训练(需要更多的训练数据,需要迭代更多的epoch,需要更大的正则项(L2正则),需要更多的数据增强(且对数据增强很敏感))

2. Vision Transformer结构

MobileViT论文中绘制的Standard visual Transformer。首先将输入的图片划分成一个个Patch,然后通过线性变化将每个Patch映射到一个一维向量中(视为一个个Token),接着加上位置偏置信息(可学习参数),再通过一系列Transformer Block,最后通过一个全连接层得到最终预测输出。
MobileViT神经网络模型

 2. MobileViT结构

MobileViT神经网络模型

如图 b 所示的 MobileViT 块的作用是使用包含较少参数的输入张量学习局部和全局信息。MobileViT 应用一个 n×n 标准卷积层,然后是逐点(1×1)卷积层来特征提取。n×n 卷积层编码局部空间信息,而逐点卷积通过学习输入通道的线性组合将张量投影到高维空间。

总而言之, MobileViT 使用标准卷积和 transformer 分别学习局部和全局表示,使得MobileViT 既具有类似卷积的属性,又同时允许全局处理。

MobileViT结构:普通卷积,MV2(MobiletNetV2中的Inverted Residual block),MobileViT block,全局池化以及全连接层共同组成。 

mobileNetV2

                                               MobileViT神经网络模型

Expansion layer是使用1x1卷积将低维空间映射到高维空间(扩大通道数),这里Expansion有一个超参数是维度扩展几倍,可以根据实际情况来做调整的,默认值是6,也就是扩展6倍。

Projection layer也是使用1x1卷积,他的目的是希望把高维特征映射到低维空间去(减小通道数)。需要注意的是residual connection是在输入和输出的部分进行连接。另外,前面已经说过,因为从高维向低维转换,使用ReLU激活函数可能会造成信息丢失或破坏,所以在Projection convolution这一部分,我们不再使用ReLU激活函数而是使用线性激活函数。

MobileViT神经网络模型

3.模型代码

class MobileViTBlock(nn.Module):
    def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
        super().__init__()
        self.ph, self.pw = patch_size

        self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
        self.conv2 = conv_1x1_bn(channel, dim)

        self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)

        self.conv3 = conv_1x1_bn(dim, channel)
        self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
    
    def forward(self, x):
        y = x.clone()

        # Local representations
        x = self.conv1(x)
        x = self.conv2(x)
        
        # Global representations
        _, _, h, w = x.shape
        x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
        x = self.transformer(x)
        x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)

        # Fusion
        x = self.conv3(x)
        x = torch.cat((x, y), 1)
        x = self.conv4(x)
        return x
import torch
import torch.nn as nn

from einops import rearrange


def conv_1x1_bn(inp, oup):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm2d(oup),
        nn.SiLU()
    )


def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
    return nn.Sequential(
        nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
        nn.SiLU()
    )


class PreNorm(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs)


class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    
    def forward(self, x):
        return self.net(x)


class Attention(nn.Module):
    def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        qkv = self.to_qkv(x).chunk(3, dim=-1)
        q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h = self.heads), qkv)

        dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
        attn = self.attend(dots)
        out = torch.matmul(attn, v)
        out = rearrange(out, 'b p h n d -> b p n (h d)')
        return self.to_out(out)


class Transformer(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
            ]))
    
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) + x
        return x


class MV2Block(nn.Module):
    def __init__(self, inp, oup, stride=1, expansion=4):
        super().__init__()
        self.stride = stride
        assert stride in [1, 2]

        hidden_dim = int(inp * expansion)
        self.use_res_connect = self.stride == 1 and inp == oup

        if expansion == 1:
            self.conv = nn.Sequential(
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )
        else:
            self.conv = nn.Sequential(
                # pw
                nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # dw
                nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
                nn.BatchNorm2d(hidden_dim),
                nn.SiLU(),
                # pw-linear
                nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

    def forward(self, x):
        if self.use_res_connect:
            return x + self.conv(x)
        else:
            return self.conv(x)


class MobileViTBlock(nn.Module):
    def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
        super().__init__()
        self.ph, self.pw = patch_size

        self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
        self.conv2 = conv_1x1_bn(channel, dim)

        self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)

        self.conv3 = conv_1x1_bn(dim, channel)
        self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
    
    def forward(self, x):
        y = x.clone()

        # Local representations
        x = self.conv1(x)
        x = self.conv2(x)
        
        # Global representations
        _, _, h, w = x.shape
        x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
        x = self.transformer(x)
        x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h//self.ph, w=w//self.pw, ph=self.ph, pw=self.pw)

        # Fusion
        x = self.conv3(x)
        x = torch.cat((x, y), 1)
        x = self.conv4(x)
        return x


class MobileViT(nn.Module):
    def __init__(self, image_size, dims, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2)):
        super().__init__()
        ih, iw = image_size
        ph, pw = patch_size
        assert ih % ph == 0 and iw % pw == 0

        L = [2, 4, 3]

        self.conv1 = conv_nxn_bn(3, channels[0], stride=2)

        self.mv2 = nn.ModuleList([])
        self.mv2.append(MV2Block(channels[0], channels[1], 1, expansion))
        self.mv2.append(MV2Block(channels[1], channels[2], 2, expansion))
        self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
        self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))   # Repeat
        self.mv2.append(MV2Block(channels[3], channels[4], 2, expansion))
        self.mv2.append(MV2Block(channels[5], channels[6], 2, expansion))
        self.mv2.append(MV2Block(channels[7], channels[8], 2, expansion))
        
        self.mvit = nn.ModuleList([])
        self.mvit.append(MobileViTBlock(dims[0], L[0], channels[5], kernel_size, patch_size, int(dims[0]*2)))
        self.mvit.append(MobileViTBlock(dims[1], L[1], channels[7], kernel_size, patch_size, int(dims[1]*4)))
        self.mvit.append(MobileViTBlock(dims[2], L[2], channels[9], kernel_size, patch_size, int(dims[2]*4)))

        self.conv2 = conv_1x1_bn(channels[-2], channels[-1])

        self.pool = nn.AvgPool2d(ih//32, 1)
        self.fc = nn.Linear(channels[-1], num_classes, bias=False)

    def forward(self, x):
        x = self.conv1(x)
        x = self.mv2[0](x)

        x = self.mv2[1](x)
        x = self.mv2[2](x)
        x = self.mv2[3](x)      # Repeat

        x = self.mv2[4](x)
        x = self.mvit[0](x)

        x = self.mv2[5](x)
        x = self.mvit[1](x)

        x = self.mv2[6](x)
        x = self.mvit[2](x)
        x = self.conv2(x)

        x = self.pool(x).view(-1, x.shape[1])
        x = self.fc(x)
        return x


def mobilevit_xxs(img_size=(256, 256), num_classes=1000):
    dims = [64, 80, 96]
    channels = [16, 16, 24, 24, 48, 48, 64, 64, 80, 80, 320]
    return MobileViT((img_size[0], img_size[1]), dims, channels, num_classes=num_classes, expansion=2)


def mobilevit_xs(img_size=(256, 256), num_classes=1000):
    dims = [96, 120, 144]
    channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384]
    return MobileViT((img_size[0], img_size[1]), dims, channels, num_classes=num_classes)


def mobilevit_s(img_size=(256, 256), num_classes=1000):
    dims = [144, 192, 240]
    channels = [16, 32, 64, 64, 96, 96, 128, 128, 160, 160, 640]
    return MobileViT((img_size[0], img_size[1]), dims, channels, num_classes=num_classes)


def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


if __name__ == '__main__':
    img = torch.randn(5, 3, 256, 256)

    vit = mobilevit_xxs(img_size=(256, 256))
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

    vit = mobilevit_xs()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

    vit = mobilevit_s()
    out = vit(img)
    print(out.shape)
    print(count_parameters(vit))

注意,输入图片不能是224x224,因为reshape时会报错,可以设置成256x256或其他。文章来源地址https://www.toymoban.com/news/detail-444187.html

到了这里,关于MobileViT神经网络模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • PyTorch+PyG实现图神经网络经典模型目录

    大家好,我是阿光。 本专栏整理了《图神经网络代码实战》,内包含了不同图神经网络的相关代码实现(PyG以及自实现),理论与实践相结合,如GCN、GAT、GraphSAGE等经典图网络,每一个代码实例都附带有完整的代码。 正在更新中~ ✨ 🚨 我的项目环境: 平台:Windows10 语言环

    2024年02月03日
    浏览(41)
  • PyTorch深度学习实战(1)——神经网络与模型训练过程详解

    人工神经网络 ( Artificial Neural Network , ANN ) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数据拟

    2024年02月06日
    浏览(47)
  • 人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型10-pytorch搭建脉冲神经网络(SNN)实现及应用,脉冲神经网络(SNN)是一种基于生物神经系统的神经网络模型,它通过模拟神经元之间的电信号传递来实现信息处理。与传统的人工神经网络(ANN)不同,SNN 中的

    2024年02月08日
    浏览(45)
  • 【AI】《动手学-深度学习-PyTorch版》笔记(十八):卷积神经网络模型

    发布时间:1989年 模型目的:识别手写数字 1.3.1 相关函数原型 1)nn.Conv2d:卷积层

    2024年02月13日
    浏览(73)
  • 人工智能(Pytorch)搭建模型1-卷积神经网络实现简单图像分类

    本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052 目录 一、Pytorch深度学习框架 二、 卷积神经网络 三、代码实战 内容: 一、Pytorch深度学习框架 PyTorch是一个开源的深度学习框架,它基于Torch进行了重新实现,主要支持GPU加速计算,同时也可以在CPU上运行

    2024年02月03日
    浏览(62)
  • 【Pytorch】计算机视觉项目——卷积神经网络CNN模型识别图像分类

    在上一篇笔记《【Pytorch】整体工作流程代码详解(新手入门)》中介绍了Pytorch的整体工作流程,本文继续说明如何使用Pytorch搭建卷积神经网络(CNN模型)来给图像分类。 其他相关文章: 深度学习入门笔记:总结了一些神经网络的基础概念。 TensorFlow专栏:《计算机视觉入门

    2024年02月05日
    浏览(54)
  • Python基于PyTorch实现循环神经网络回归模型(LSTM回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 LSTM网络是目前更加通用的循环神经网络结构,全称为Long Short-Term Memory,翻译成中文叫作“长‘短记忆’”网络。读的时候,“长”后面要稍

    2024年02月16日
    浏览(54)
  • Python基于PyTorch实现循环神经网络分类模型(LSTM分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 LSTM网络是目前更加通用的循环神经网络结构,全称为Long Short-Term Memory,翻译成中文叫作“长‘短记忆’”网络。读的时候,“长”后面要稍

    2024年02月16日
    浏览(49)
  • Python基于PyTorch实现卷积神经网络分类模型(CNN分类算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(47)
  • Python基于PyTorch实现卷积神经网络回归模型(CNN回归算法)项目实战

    说明:这是一个机器学习实战项目(附带 数据+代码+文档+视频讲解 ),如需 数据+代码+文档+视频讲解 可以直接到文章最后获取。 卷积神经网络,简称为卷积网络,与普通神经网络的区别是它的卷积层内的神经元只覆盖输入特征局部范围的单元,具有稀疏连接(sparse connec

    2024年02月15日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包