分布式ID解决方案对比

这篇具有很好参考价值的文章主要介绍了分布式ID解决方案对比。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

在复杂的分布式系统中,往往需要对大量的数据进行唯一标识,比如在对一个订单表进行了分库分表操作,这时候数据库的自增ID显然不能作为某个订单的唯一标识。除此之外还有其他分布式场景对分布式ID的一些要求:

  • 趋势递增: 由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。

  • 单调递增: 保证下一个ID一定大于上一个ID,例如排序需求。

  • 信息安全: 如果ID是连续的,恶意用户的扒取工作就非常容易做了;如果是订单号就更危险了,可以直接知道我们的单量。所以在一些应用场景下,会需要ID无规则、不规则。

就不同的场景及要求,市面诞生了很多分布式ID解决方案。本文针对多个分布式ID解决方案进行介绍,包括其优缺点、使用场景及代码示例。

一、UUID 

UUID(Universally Unique Identifier)是基于当前时间、计数器(counter)和硬件标识(通常为无线网卡的MAC地址)等数据计算生成的。包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,可以生成全球唯一的编码并且性能高效。

JDK提供了UUID生成工具,代码如下:

import java.util.UUID;

public class Test {
    public static void main(String[] args) {
        System.out.println(UUID.randomUUID());
        // 输出:b0378f6a-eeb7-4779-bffe-2a9f3bc76380
    }
}

UUID完全可以满足分布式唯一标识,但是在实际应用过程中一般不采用,有如下几个原因:

  • 存储成本高: UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用。

  • 信息不安全: 基于MAC地址生成的UUID算法会暴露MAC地址,曾经梅丽莎病毒的制造者就是根据UUID寻找的。

  • 不符合MySQL主键要求: MySQL官方有明确的建议主键要尽量越短越好,因为太长对MySQL索引不利:如果作为数据库主键,在InnoDB引擎下,UUID的无序性可能会引起数据位置频繁变动,严重影响性能。

二、数据库自增ID

利用Mysql的特性ID自增,可以达到数据唯一标识,但是分库分表后只能保证一个表中的ID的唯一,而不能保证整体的ID唯一。为了避免这种情况,我们有以下两种方式解决该问题。

2.1 主键表

通过单独创建主键表维护唯一标识,作为ID的输出源可以保证整体ID的唯一。举个例子:

创建一个主键表

CREATE TABLE `unique_id`  (
  `id` bigint NOT NULL AUTO_INCREMENT,
  `biz` char(1) NOT NULL,
  PRIMARY KEY (`id`),
 UNIQUE KEY `biz` (`biz`)
) ENGINE = InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET =utf8;

业务通过更新操作来获取ID信息,然后添加到某个分表中。

BEGIN;

REPLACE INTO unique_id (biz) values ('o') ;
SELECT LAST_INSERT_ID();

COMMIT;

分布式ID解决方案对比

 2.2 ID自增步长设置

我们可以设置Mysql主键自增步长,让分布在不同实例的表数据ID做到不重复,保证整体的唯一。

如下,可以设置Mysql实例1步长为1,实例1步长为2。

分布式ID解决方案对比

查看主键自增的属性

show variables like '%increment%'

 分布式ID解决方案对比

 显然,这种方式在并发量比较高的情况下,如何保证扩展性其实会是一个问题。

三、号段模式

号段模式是当下分布式ID生成器的主流实现方式之一。其原理如下:

  • 号段模式每次从数据库取出一个号段范围,加载到服务内存中。业务获取时ID直接在这个范围递增取值即可。

  • 等这批号段ID用完,再次向数据库申请新号段,对max_id字段做一次update操作,新的号段范围是(max_id ,max_id +step]。

  • 由于多业务端可能同时操作,所以采用版本号version乐观锁方式更新。

分布式ID解决方案对比

 例如 (1,1000] 代表1000个ID,具体的业务服务将本号段生成1~1000的自增ID。表结构如下:

CREATE TABLE id_generator (
  id int(10) NOT NULL,
  max_id bigint(20) NOT NULL COMMENT '当前最大id',
  step int(20) NOT NULL COMMENT '号段的长度',
  biz_type    int(20) NOT NULL COMMENT '业务类型',
  version int(20) NOT NULL COMMENT '版本号,是一个乐观锁,每次都更新version,保证并发时数据的正确性',
  PRIMARY KEY (`id`)
) 

这种分布式ID生成方式不强依赖于数据库,不会频繁的访问数据库,对数据库的压力小很多。但同样也会存在一些缺点比如:服务器重启,单点故障会造成ID不连续。

四、Redis INCR

基于全局唯一ID的特性,我们可以通过Redis的INCR命令来生成全局唯一ID。

分布式ID解决方案对比

 Redis分布式ID的简单案例:

/**
 *  Redis 分布式ID生成器
 */
@Component
public class RedisDistributedId {

    @Autowired
    private StringRedisTemplate redisTemplate;

    private static final long BEGIN_TIMESTAMP = 1659312000l;

    /**
     * 生成分布式ID
     * 符号位    时间戳[31位]  自增序号【32位】
     * @param item
     * @return
     */
    public long nextId(String item){
        // 1.生成时间戳
        LocalDateTime now = LocalDateTime.now();
        // 格林威治时间差
        long nowSecond = now.toEpochSecond(ZoneOffset.UTC);
        // 我们需要获取的 时间戳 信息
        long timestamp = nowSecond - BEGIN_TIMESTAMP;
        // 2.生成序号 --》 从Redis中获取
        // 当前当前的日期
        String date = now.format(DateTimeFormatter.ofPattern("yyyy:MM:dd"));
        // 获取对应的自增的序号
        Long increment = redisTemplate.opsForValue().increment("id:" + item + ":" + date);
        return timestamp << 32 | increment;
    }

}
同样使用Redis也有对应的缺点:ID 生成的持久化问题,如果Redis宕机了怎么进行恢复?

五、雪花算法

Snowflake,雪花算法是有Twitter开源的分布式ID生成算法,以划分命名空间的方式将64bit位分割成了多个部分,每个部分都有具体的不同含义,在Java中64Bit位的整数是Long类型,所以在Java中Snowflake算法生成的ID就是long来存储的。具体如下:

分布式ID解决方案对比

  • 第一部分: 占用1bit,第一位为符号位,不适用

  • 第二部分: 41位的时间戳,41bit位可以表示241个数,每个数代表的是毫秒,那么雪花算法的时间年限是(241)/(1000×60×60×24×365)=69

  • 第三部分: 10bit表示是机器数,即 2^ 10 = 1024台机器,通常不会部署这么多机器

  • 第四部分: 12bit位是自增序列,可以表示2^12=4096个数,一秒内可以生成4096个ID,理论上snowflake方案的QPS约为409.6w/s

雪花算法案例代码:

public class SnowflakeIdWorker {

    // ==============================Fields===========================================
    /**
     * 开始时间截 (2020-11-03,一旦确定不可更改,否则时间被回调,或者改变,可能会造成id重复或冲突)
     */
    private final long twepoch = 1604374294980L;

    /**
     * 机器id所占的位数
     */
    private final long workerIdBits = 5L;

    /**
     * 数据标识id所占的位数
     */
    private final long datacenterIdBits = 5L;

    /**
     * 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数)
     */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

    /**
     * 支持的最大数据标识id,结果是31
     */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

    /**
     * 序列在id中占的位数
     */
    private final long sequenceBits = 12L;

    /**
     * 机器ID向左移12位
     */
    private final long workerIdShift = sequenceBits;

    /**
     * 数据标识id向左移17位(12+5)
     */
    private final long datacenterIdShift = sequenceBits + workerIdBits;

    /**
     * 时间截向左移22位(5+5+12)
     */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    /**
     * 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095)
     */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);

    /**
     * 工作机器ID(0~31)
     */
    private long workerId;

    /**
     * 数据中心ID(0~31)
     */
    private long datacenterId;

    /**
     * 毫秒内序列(0~4095)
     */
    private long sequence = 0L;

    /**
     * 上次生成ID的时间截
     */
    private long lastTimestamp = -1L;

    //==============================Constructors=====================================

    /**
     * 构造函数
     *
     */
    public SnowflakeIdWorker() {
        this.workerId = 0L;
        this.datacenterId = 0L;
    }

    /**
     * 构造函数
     *
     * @param workerId     工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    // ==============================Methods==========================================

    /**
     * 获得下一个ID (该方法是线程安全的)
     *
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();

        //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(
                    String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        //如果是同一时间生成的,则进行毫秒内序列
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            //毫秒内序列溢出
            if (sequence == 0) {
                //阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        //时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }

        //上次生成ID的时间截
        lastTimestamp = timestamp;

        //移位并通过或运算拼到一起组成64位的ID
        return ((timestamp - twepoch) << timestampLeftShift) //
                | (datacenterId << datacenterIdShift) //
                | (workerId << workerIdShift) //
                | sequence;
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     *
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /**
     * 返回以毫秒为单位的当前时间
     *
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }

    /**
     * 随机id生成,使用雪花算法
     *
     * @return
     */
    public static String getSnowId() {
        SnowflakeIdWorker sf = new SnowflakeIdWorker();
        String id = String.valueOf(sf.nextId());
        return id;
    }

    //=========================================Test=========================================

    /**
     * 测试
     */
    public static void main(String[] args) {
        SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
        for (int i = 0; i < 1000; i++) {
            long id = idWorker.nextId();
            System.out.println(id);
        }
    }
}
雪花算法强依赖机器时钟,如果机器上时钟回拨,会导致发号重复。通常通过记录最后使用时间处理该问题。

分布式ID解决方案对比

六、美团-Leaf

开源项目链接:https://github.com/Meituan-Dianping/Leaf

Leaf同时支持号段模式和snowflake算法模式,可以切换使用。

snowflake模式依赖于ZooKeeper,不同于原始snowflake算法也主要是在workId的生成上,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

号段模式是对直接用数据库自增ID充当分布式ID的一种优化,减少对数据库的频率操作。相当于从数据库批量的获取自增ID,每次从数据库取出一个号段范围,例如 (1,1000] 代表1000个ID,业务服务将号段在本地生成1~1000的自增ID并加载到内存。

七、百度-Uidgenerator

  • 开源项目链接:https://github.com/baidu/uid-generator
  • 中文文档地址:https://github.com/baidu/uid-generator/blob/master/README.zh_cn.md

 UidGenerator是百度开源的Java语言实现,基于Snowflake算法的唯一ID生成器。它是分布式的,并克服了雪花算法的并发限制。单个实例的QPS能超过6000000。需要的环境:JDK8+,MySQL(用于分配WorkerId)。

百度的Uidgenerator对结构做了部分的调整,具体如下:

分布式ID解决方案对比

 时间部分只有28位,这就意味着UidGenerator默认只能承受8.5年(2^28-1/86400/365),不过UidGenerator可以适当调整delta seconds、worker node id和sequence占用位数。

八、滴滴-TinyID

开源项目链接:https://github.com/didi/tinyid

Tinyid是在美团(Leaf)的leaf-segment算法基础上升级而来,不仅支持了数据库多主节点模式,还提供了tinyid-client客户端的接入方式,使用起来更加方便。

但和美团(Leaf)不同的是,Tinyid只支持号段一种模式不支持雪花模式。Tinyid提供了两种调用方式,一种基于Tinyid-server提供的http方式,另一种Tinyid-client客户端方式。

九、对比总结

分布式ID解决方案对比文章来源地址https://www.toymoban.com/news/detail-444592.html

到了这里,关于分布式ID解决方案对比的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式锁解决方案

    由于分布式或者集群部署项目时,在某些业务场景下需保证资源的原子性、一致性和互斥性。 如果把房子比作资源,通俗的来讲,我无论在那个城市生活,这个房子我先租的,再没有退房的前提下,别人都不能用 目前最流行的解决方案 redisson 分布式锁 zookeeper 分布式锁 mav

    2024年02月12日
    浏览(45)
  • 分布式websocket解决方案

    websocket基础请自行学习,本文章是解决在分布式环境下websocket通讯问题。 在单体环境下,所有web客户端都是连接到某一个微服务上,这样消息都是到达统一服务端,并且也是由一个服务端进行响应,所以不会出现问题。 但是在分布式环境下,我们很容易发现,客户端连接的

    2024年02月13日
    浏览(41)
  • 【SpirngCloud】分布式事务解决方案

    1.1 CAP 理论 1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标: Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致 Availability(可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝 Partition tolerance(分区容

    2024年02月15日
    浏览(45)
  • Redis 分布式锁解决方案

    我们日常在电商网站购物时经常会遇到一些高并发的场景,例如电商 App 上经常出现的秒杀活动、限量优惠券抢购,还有我们去哪儿网的火车票抢票系统等,这些场景有一个共同特点就是访问量激增,虽然在系统设计时会通过限流、异步、排队等方式优化,但整体的并发还是

    2023年04月22日
    浏览(44)
  • ChatGPT:分布式事务解决方案

    随着互联网的发展和技术的不断更新,越来越多的应用程序开始采用分布式架构。然而,由于数据和处理逻辑的分散性和异构性,分布式环境下的事务处理面临着许多挑战。这时候就需要采用分布式事务来确保系统的一致性和可靠性。 分布式事务是指在分布式系统中,涉及多

    2023年04月12日
    浏览(86)
  • 浅谈分布式事务及解决方案

    在讲述分布式事务的概念之前,我们先来回顾下事务相关的一些概念。 就是一个程序执行单元,里面的操作要么全部执行成功,要么全部执行失败,不允许只成功一半另外一半执行失败的事情发生。例如一段事务代码做了两次数据库更新操作,那么这两次数据库操作要么全部

    2024年02月08日
    浏览(48)
  • 聊聊分布式解决方案Saga模式

    Saga模式使用一系列本地事务来提供事务管理,而一个本地事务对应一个Saga参与者,在Saga流程里面每一个本地事务只操作本地数据库,然后通过消息或事件来触发下一个本地事务,如果其中一个本地事务失败了,Saga就会执行一系列补偿事务来实现回滚操作。(补偿事务简单来

    2024年02月06日
    浏览(36)
  • 无限容量分布式文件存储解决方案

    常见分布式文件系统比较 常见的分布式文件系统有GFS、HDFS 、Ceph 、GridFS 、TFS、FastDFS等。各自适用于不同的领域。 类 Google FS 都支持文件冗余备份,例如 Google FS、TFS 的备份数是 3。一个文件存储到哪几个存储结点,通常采用动态分配的方式。采用这种方式,一个文件存储到

    2024年02月11日
    浏览(46)
  • 分布式锁-Redis红锁解决方案

    分布式锁(多服务共享锁) 在分布式的部署环境下,通过锁机制来让多客户端互斥的对共享资源进行访问控制分布式系统不同进程共同访问共享资源的一种锁的实现。如果不同的系统或同一个系统的不同主机之间共享了某个临界资源,往往需要互斥来防止彼此干扰,以保证一

    2024年02月06日
    浏览(41)
  • 论文-分布式-并发控制-并发控制问题的解决方案

    目录 参考文献 问题 解法与证明 易读版本 参考文献 Dijkstra于1965年发表文章Solution of a Problem in Concurrent Programming Control,引出并发系统下的互斥(mutual exclusion)问题,自此开辟了分布式计算领域 Dijkstra在文中给出了基于共享存储原子性访问的解决方案只有十多行代码,但阅读起来

    2024年02月08日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包