1. 二阶张量的代数运算与矩阵的代数运算
4.1. 二阶张量的相等、加(减)、数乘
二阶张量的相等、加(减)、数乘运算与矩阵相等、加(减)、数乘运算一 一对应;
1.2. 二阶张量的缩并
与二阶张量的缩并相关的运算为求二阶张量的迹
t
r
(
T
)
tr(\bold{T})
tr(T):
t
r
(
T
)
=
T
i
j
g
i
j
=
T
i
∙
i
=
T
1
∙
1
+
T
2
∙
2
+
T
3
∙
3
=
T
∙
i
i
=
T
∙
1
1
+
T
∙
2
2
+
T
∙
3
3
=
T
i
j
g
i
j
tr(\bold{T}) =T^{ij}g_{ij} =T_i^{\bullet i} =T_1^{\bullet 1}+T_2^{\bullet 2}+T_3^{\bullet 3} =T^i_{\bullet i} =T^1_{\bullet 1}+T^2_{\bullet 2}+T^3_{\bullet 3} =T_{ij}g^{ij}
tr(T)=Tijgij=Ti∙i=T1∙1+T2∙2+T3∙3=T∙ii=T∙11+T∙22+T∙33=Tijgij显然,与之相关的矩阵运算为求方阵
τ
2
、
τ
3
\tau_2、\tau_3
τ2、τ3 的迹。
二阶张量迹的运算性质:
若
A
,
B
,
C
∈
T
2
(
V
)
\bold{A},\bold{B},\bold{C}\in\mathscr{T}_2(V)
A,B,C∈T2(V),则:
(
1
)
t
r
(
A
+
B
)
=
t
r
(
A
)
+
t
r
(
B
)
(
2
)
t
r
(
A
⋅
B
)
=
t
r
(
B
⋅
A
)
(
3
)
t
r
(
A
⋅
B
⋅
C
)
=
t
r
(
B
⋅
C
⋅
A
)
=
t
r
(
C
⋅
A
⋅
B
)
(
4
)
A
:
B
=
t
r
(
A
T
⋅
B
)
=
t
r
(
A
⋅
B
T
)
=
t
r
(
B
T
⋅
A
)
=
t
r
(
B
⋅
A
T
)
\begin{aligned} &(1)\ tr(\bold{A}+\bold{B})=tr(\bold{A})+tr(\bold{B})\\\\ &(2)\ tr(\bold{A}\cdot\bold{B})=tr(\bold{B}\cdot\bold{A})\\\\ &(3)\ tr(\bold{A}\cdot\bold{B}\cdot\bold{C})=tr(\bold{B}\cdot\bold{C}\cdot\bold{A})=tr(\bold{C}\cdot\bold{A}\cdot\bold{B})\\\\ &(4)\ \bold{A}:\bold{B}=tr(\bold{A}^T\cdot\bold{B})=tr(\bold A\cdot\bold B^T)=tr(\bold{B}^T\cdot\bold{A})=tr(\bold B\cdot\bold A^T) \end{aligned}
(1) tr(A+B)=tr(A)+tr(B)(2) tr(A⋅B)=tr(B⋅A)(3) tr(A⋅B⋅C)=tr(B⋅C⋅A)=tr(C⋅A⋅B)(4) A:B=tr(AT⋅B)=tr(A⋅BT)=tr(BT⋅A)=tr(B⋅AT)
证明:
(
1
)
t
r
(
A
+
B
)
=
A
∙
i
i
+
B
∙
i
i
=
t
r
(
A
)
+
t
r
(
B
)
(
2
)
t
r
(
A
⋅
B
)
=
A
∙
j
i
B
∙
i
j
=
B
∙
i
j
A
∙
j
i
=
t
r
(
B
⋅
A
)
(
3
)
t
r
(
A
⋅
B
⋅
C
)
=
A
∙
j
i
B
∙
k
j
C
∙
i
k
=
B
∙
k
j
C
∙
i
k
A
∙
j
i
=
t
r
(
B
⋅
C
⋅
A
)
=
C
∙
i
k
A
∙
j
i
B
∙
k
j
=
t
r
(
C
⋅
A
⋅
B
)
(
4
)
A
:
B
=
A
∙
j
i
B
i
∙
j
=
(
B
T
)
∙
i
j
A
∙
j
i
=
t
r
(
B
T
⋅
A
)
=
(
A
T
)
j
∙
i
B
i
∙
j
=
t
r
(
A
T
⋅
B
)
\begin{aligned} &(1)\ tr(\bold{A}+\bold{B})=A^{i}_{\bullet i}+B^{i}_{\bullet i}=tr(\bold{A})+tr(\bold{B})\\\\ &(2)\ tr(\bold{A}\cdot\bold{B})=A^{i}_{\bullet j}B^{j}_{\bullet i}=B^{j}_{\bullet i}A^{i}_{\bullet j}=tr(\bold{B}\cdot\bold{A})\\\\ &(3)\ tr(\bold{A}\cdot\bold{B}\cdot\bold{C})=A^{i}_{\bullet j}B^{j}_{\bullet k}C^{k}_{\bullet i}=B^{j}_{\bullet k}C^{k}_{\bullet i}A^{i}_{\bullet j}=tr(\bold{B}\cdot\bold{C}\cdot\bold{A})\\\\ &\qquad\qquad\quad\ \ =C^{k}_{\bullet i}A^{i}_{\bullet j}B^{j}_{\bullet k}=tr(\bold{C}\cdot\bold{A}\cdot\bold{B})\\\\ &(4)\ \bold{A}:\bold{B}=A^{i}_{\bullet j}B_{i}^{\bullet j}=(B^T)_{\bullet i}^{j}A^{i}_{\bullet j}=tr(\bold{B}^T\cdot\bold{A})\\\\ &\qquad\qquad\ =(A^T)_{j}^{\bullet i}B_{i}^{\bullet j}=tr(\bold{A}^T\cdot\bold{B}) \end{aligned}
(1) tr(A+B)=A∙ii+B∙ii=tr(A)+tr(B)(2) tr(A⋅B)=A∙jiB∙ij=B∙ijA∙ji=tr(B⋅A)(3) tr(A⋅B⋅C)=A∙jiB∙kjC∙ik=B∙kjC∙ikA∙ji=tr(B⋅C⋅A) =C∙ikA∙jiB∙kj=tr(C⋅A⋅B)(4) A:B=A∙jiBi∙j=(BT)∙ijA∙ji=tr(BT⋅A) =(AT)j∙iBi∙j=tr(AT⋅B)
1.3. 二阶张量与矢量的点积 —— 线性变换
w
⃗
=
T
∙
u
⃗
⟺
w
i
=
T
∙
j
i
u
j
⟺
[
w
1
w
2
w
3
]
=
[
T
∙
1
1
T
∙
2
1
T
∙
3
1
T
∙
1
2
T
∙
2
2
T
∙
3
2
T
∙
1
3
T
∙
2
3
T
∙
3
3
]
[
u
1
u
2
u
3
]
⟺
w
⃗
=
τ
3
u
⃗
t
⃗
=
u
⃗
∙
T
⟺
t
i
=
u
j
T
j
∙
i
⟺
[
t
1
t
2
t
3
]
=
[
T
1
∙
1
T
2
∙
1
T
3
∙
1
T
1
∙
2
T
2
∙
2
T
3
∙
2
T
1
∙
3
T
2
∙
3
T
3
∙
3
]
[
u
1
u
2
u
3
]
⟺
t
⃗
=
τ
2
u
⃗
\vec{w}=\bold{T}\bullet\vec{u} \Longleftrightarrow w^i=T^{i}_{\bullet j}u^j \Longleftrightarrow \begin{bmatrix}w^1\\\\w^2\\\\w^3\end{bmatrix} =\begin{bmatrix} T^{1}_{\bullet 1} & T^{1}_{\bullet 2} & T^{1}_{\bullet 3} \\ \\ T^{2}_{\bullet 1} & T^{2}_{\bullet 2} & T^{2}_{\bullet 3} \\ \\ T^{3}_{\bullet 1} & T^{3}_{\bullet 2} & T^{3}_{\bullet 3} \end{bmatrix} \begin{bmatrix}u^1\\\\u^2\\\\u^3\end{bmatrix} \Longleftrightarrow \vec{w}=\tau_{3}\vec{u} \\\ \\ \vec{t}=\vec{u}\bullet\bold{T} \Longleftrightarrow t^i=u^jT^{\bullet i}_{j} \Longleftrightarrow \begin{bmatrix}t^1\\\\t^2\\\\t^3\end{bmatrix} =\begin{bmatrix} T_{1}^{\bullet 1} & T_{2}^{\bullet 1} & T_{3}^{\bullet 1} \\ \\ T_{1}^{\bullet 2} & T_{2}^{\bullet 2} & T_{3}^{\bullet 2} \\ \\ T_{1}^{\bullet 3} & T_{2}^{\bullet 3} & T_{3}^{\bullet 3} \end{bmatrix} \begin{bmatrix}u^1\\\\u^2\\\\u^3\end{bmatrix} \Longleftrightarrow \vec{t}=\tau_{2}\vec{u}
w=T∙u⟺wi=T∙jiuj⟺
w1w2w3
=
T∙11T∙12T∙13T∙21T∙22T∙23T∙31T∙32T∙33
u1u2u3
⟺w=τ3u t=u∙T⟺ti=ujTj∙i⟺
t1t2t3
=
T1∙1T1∙2T1∙3T2∙1T2∙2T2∙3T3∙1T3∙2T3∙3
u1u2u3
⟺t=τ2u显然,二阶张量与矢量的左、右点积一般不等:
T
∙
u
⃗
≠
u
⃗
∙
T
\bold{T}\bullet\vec{u}\ne\vec{u}\bullet\bold{T}
T∙u=u∙T且有:
(
τ
T
)
3
u
⃗
=
τ
2
u
⃗
⟺
T
T
∙
u
⃗
=
u
⃗
∙
T
(\tau^T)_3\vec{u}=\tau_{2}\vec{u} \Longleftrightarrow \bold{T}^T\bullet\vec{u}=\vec{u}\bullet\bold{T}
(τT)3u=τ2u⟺TT∙u=u∙T那么有:
N
∙
u
⃗
=
u
⃗
∙
N
(
N
为对称二阶张量
)
Ω
∙
u
⃗
=
−
u
⃗
∙
Ω
(
Ω
为反对称二阶张量
)
\bold{N}\bullet\vec{u}=\vec{u}\bullet\bold{N} \qquad(\bold{N}为对称二阶张量)\\\ \\ \bold{\Omega}\bullet\vec{u}=-\vec{u}\bullet\bold{\Omega} \qquad(\bold{\Omega}为反对称二阶张量)
N∙u=u∙N(N为对称二阶张量) Ω∙u=−u∙Ω(Ω为反对称二阶张量)与矩阵与列向量的乘法相同,二阶张量可将任意向量映射为其它的向量,故也将二阶张量与矢量的点积称作线性变换。另外,任意对称二阶张量也对应着一个二次型,即:
x
⃗
∙
N
∙
x
⃗
=
N
:
x
⃗
x
⃗
=
N
i
j
x
i
x
j
=
[
x
1
x
2
x
3
]
[
N
11
N
12
N
13
N
21
N
22
N
23
N
31
N
32
N
33
]
[
x
1
x
2
x
3
]
=
x
⃗
T
N
1
x
⃗
\vec{x}\bullet\bold{N}\bullet\vec{x} =\bold{N}:\vec{x}\vec{x} =N_{ij}x^ix^j =\begin{bmatrix}x^1 & x^2 & x^3\end{bmatrix} \begin{bmatrix} N_{11} & N_{12} & N_{13} \\ \\ N_{21} & N_{22} & N_{23} \\ \\ N_{31} & N_{32} & N_{33} \end{bmatrix} \begin{bmatrix}x^1 \\\\ x^2 \\\\ x^3\end{bmatrix} =\vec{x}^TN_{1}\vec{x}
x∙N∙x=N:xx=Nijxixj=[x1x2x3]
N11N21N31N12N22N32N13N23N33
x1x2x3
=xTN1x
1.4. 二阶张量与二阶张量的点积
二阶张量的点积采用分量形式有:
C
i
j
=
A
i
∙
k
B
k
j
=
A
i
k
B
∙
j
k
⟺
C
1
=
[
C
i
j
]
=
[
A
1
∙
1
A
2
∙
1
A
3
∙
1
A
1
∙
2
A
2
∙
2
A
3
∙
2
A
1
∙
3
A
2
∙
3
A
3
∙
3
]
T
[
B
11
B
12
B
13
B
21
B
22
B
23
B
31
B
32
B
33
]
=
A
2
T
B
1
=
[
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
]
[
B
∙
1
1
B
∙
2
1
B
∙
3
1
B
∙
1
2
B
∙
2
2
B
∙
3
2
B
∙
1
3
B
∙
2
3
B
∙
3
3
]
=
A
1
B
3
C
i
∙
j
=
A
i
∙
k
B
k
∙
j
=
A
i
k
B
k
j
⟺
C
2
=
[
C
i
∙
j
]
=
[
A
1
∙
1
A
2
∙
1
A
3
∙
1
A
1
∙
2
A
2
∙
2
A
3
∙
2
A
1
∙
3
A
2
∙
3
A
3
∙
3
]
[
B
1
∙
1
B
2
∙
1
B
3
∙
1
B
1
∙
2
B
2
∙
2
B
3
∙
2
B
1
∙
3
B
2
∙
3
B
3
∙
3
]
=
A
2
B
2
=
[
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
]
[
B
11
B
12
B
13
B
21
B
22
B
23
B
31
B
32
B
33
]
=
A
1
B
4
C
∙
j
i
=
A
∙
k
i
B
∙
j
k
=
A
i
k
B
k
j
⟺
C
3
=
[
C
∙
j
i
]
=
[
A
∙
1
1
A
∙
2
1
A
∙
3
1
A
∙
1
2
A
∙
2
2
A
∙
3
2
A
∙
1
3
A
∙
2
3
A
∙
3
3
]
[
B
∙
1
1
B
∙
2
1
B
∙
3
1
B
∙
1
2
B
∙
2
2
B
∙
3
2
B
∙
1
3
B
∙
2
3
B
∙
3
3
]
=
A
3
B
3
=
[
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
]
[
B
11
B
12
B
13
B
21
B
22
B
23
B
31
B
32
B
33
]
=
A
4
B
1
C
i
j
=
A
∙
k
i
B
k
j
=
A
i
k
B
k
∙
j
⟺
C
2
=
[
C
i
j
]
=
[
A
∙
1
1
A
∙
2
1
A
∙
3
1
A
∙
1
2
A
∙
2
2
A
∙
3
2
A
∙
1
3
A
∙
2
3
A
∙
3
3
]
[
B
11
B
12
B
13
B
21
B
22
B
23
B
31
B
32
B
33
]
=
A
3
B
4
=
[
A
11
A
12
A
13
A
21
A
22
A
23
A
31
A
32
A
33
]
[
B
1
∙
1
B
2
∙
1
B
3
∙
1
B
1
∙
2
B
2
∙
2
B
3
∙
2
B
1
∙
3
B
2
∙
3
B
3
∙
3
]
T
=
A
4
B
2
T
C_{ij}=A_{i}^{\bullet k}B_{k j}=A_{ik}B^k_{\bullet j} \Longleftrightarrow C_{1}=[C_{ij}] =\begin{bmatrix} A_{1}^{\bullet 1} & A_{2}^{\bullet 1} & A_{3}^{\bullet 1} \\\\ A_{1}^{\bullet 2} & A_{2}^{\bullet 2} & A_{3}^{\bullet 2} \\\\ A_{1}^{\bullet 3} & A_{2}^{\bullet 3} & A_{3}^{\bullet 3} \end{bmatrix}^T \begin{bmatrix} B_{11} & B_{12} & B_{13} \\\\ B_{21} & B_{22} & B_{23} \\\\ B_{31} & B_{32} & B_{33} \end{bmatrix} =A_{2}^TB_{1} =\begin{bmatrix} A_{11} & A_{12} & A_{13} \\\\ A_{21} & A_{22} & A_{23} \\\\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} B^1_{\bullet 1} & B^1_{\bullet 2} & B^1_{\bullet 3} \\\\ B^2_{\bullet 1} & B^2_{\bullet 2} & B^2_{\bullet 3} \\\\ B^3_{\bullet 1} & B^3_{\bullet 2} & B^3_{\bullet 3} \end{bmatrix} =A_{1}B_{3}\\\ \\ %%%%%%%%%%%%%%%% C_{i}^{\bullet j}=A_{i}^{\bullet k}B_k^{\bullet j}=A_{ik}B^{kj} \Longleftrightarrow C_{2}=[C_{i}^{\bullet j}] =\begin{bmatrix} A_{1}^{\bullet 1} & A_{2}^{\bullet 1} & A_{3}^{\bullet 1} \\\\ A_{1}^{\bullet 2} & A_{2}^{\bullet 2} & A_{3}^{\bullet 2} \\\\ A_{1}^{\bullet 3} & A_{2}^{\bullet 3} & A_{3}^{\bullet 3} \end{bmatrix} \begin{bmatrix} B_{1}^{\bullet 1} & B_{2}^{\bullet 1} & B_{3}^{\bullet 1} \\\\ B_{1}^{\bullet 2} & B_{2}^{\bullet 2} & B_{3}^{\bullet 2} \\\\ B_{1}^{\bullet 3} & B_{2}^{\bullet 3} & B_{3}^{\bullet 3} \end{bmatrix} =A_{2}B_{2} =\begin{bmatrix} A_{11} & A_{12} & A_{13} \\\\ A_{21} & A_{22} & A_{23} \\\\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} B^{11} & B^{12} & B^{13} \\\\ B^{21} & B^{22} & B^{23} \\\\ B^{31} & B^{32} & B^{33} \end{bmatrix} =A_{1}B_{4}\\\ \\ %%%%%%%%%%%%%%%% C_{\bullet j}^{i}=A^{i}_{\bullet k}B^k_{\bullet j}=A^{ik}B_{kj} \Longleftrightarrow C_{3}=[C_{\bullet j}^{i}] =\begin{bmatrix} A^{1}_{\bullet 1} & A^{1}_{\bullet 2}& A^{1}_{\bullet 3} \\\\ A^{2}_{\bullet 1} & A^{2}_{\bullet 2}& A^{2}_{\bullet 3} \\\\ A^{3}_{\bullet 1} & A^{3}_{\bullet 2}& A^{3}_{\bullet 3} \end{bmatrix} \begin{bmatrix} B^{1}_{\bullet 1} & B^{1}_{\bullet 2}& B^{1}_{\bullet 3} \\\\ B^{2}_{\bullet 1} & B^{2}_{\bullet 2}& B^{2}_{\bullet 3} \\\\ B^{3}_{\bullet 1} & B^{3}_{\bullet 2}& B^{3}_{\bullet 3} \end{bmatrix} =A_{3}B_{3} =\begin{bmatrix} A^{11} & A^{12} & A^{13} \\\\ A^{21} & A^{22} & A^{23} \\\\ A^{31} & A^{32} & A^{33} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\\\ B_{21} & B_{22} & B_{23} \\\\ B_{31} & B_{32} & B_{33} \end{bmatrix} =A_{4}B_{1}\\\ \\ %%%%%%%%%%%%%%%% C^{ij}=A^{i}_{\bullet k}B^{kj}=A^{ik}B_k^{\bullet j} \Longleftrightarrow C_{2}=[C^{ij}] =\begin{bmatrix} A^{1}_{\bullet 1} & A^{1}_{\bullet 2}& A^{1}_{\bullet 3} \\\\ A^{2}_{\bullet 1} & A^{2}_{\bullet 2}& A^{2}_{\bullet 3} \\\\ A^{3}_{\bullet 1} & A^{3}_{\bullet 2}& A^{3}_{\bullet 3} \end{bmatrix} \begin{bmatrix} B^{11} & B^{12} & B^{13} \\\\ B^{21} & B^{22} & B^{23} \\\\ B^{31} & B^{32} & B^{33} \end{bmatrix} =A_{3}B_{4} =\begin{bmatrix} A^{11} & A^{12} & A^{13} \\\\ A^{21} & A^{22} & A^{23} \\\\ A^{31} & A^{32} & A^{33} \end{bmatrix} \begin{bmatrix} B_{1}^{\bullet 1} & B_{2}^{\bullet 1} & B_{3}^{\bullet 1} \\\\ B_{1}^{\bullet 2} & B_{2}^{\bullet 2} & B_{3}^{\bullet 2} \\\\ B_{1}^{\bullet 3} & B_{2}^{\bullet 3} & B_{3}^{\bullet 3} \end{bmatrix}^T =A_{4}B_{2}^T %%%%%%%%%%%%%%%%
Cij=Ai∙kBkj=AikB∙jk⟺C1=[Cij]=
A1∙1A1∙2A1∙3A2∙1A2∙2A2∙3A3∙1A3∙2A3∙3
T
B11B21B31B12B22B32B13B23B33
=A2TB1=
A11A21A31A12A22A32A13A23A33
B∙11B∙12B∙13B∙21B∙22B∙23B∙31B∙32B∙33
=A1B3 Ci∙j=Ai∙kBk∙j=AikBkj⟺C2=[Ci∙j]=
A1∙1A1∙2A1∙3A2∙1A2∙2A2∙3A3∙1A3∙2A3∙3
B1∙1B1∙2B1∙3B2∙1B2∙2B2∙3B3∙1B3∙2B3∙3
=A2B2=
A11A21A31A12A22A32A13A23A33
B11B21B31B12B22B32B13B23B33
=A1B4 C∙ji=A∙kiB∙jk=AikBkj⟺C3=[C∙ji]=
A∙11A∙12A∙13A∙21A∙22A∙23A∙31A∙32A∙33
B∙11B∙12B∙13B∙21B∙22B∙23B∙31B∙32B∙33
=A3B3=
A11A21A31A12A22A32A13A23A33
B11B21B31B12B22B32B13B23B33
=A4B1 Cij=A∙kiBkj=AikBk∙j⟺C2=[Cij]=
A∙11A∙12A∙13A∙21A∙22A∙23A∙31A∙32A∙33
B11B21B31B12B22B32B13B23B33
=A3B4=
A11A21A31A12A22A32A13A23A33
B1∙1B1∙2B1∙3B2∙1B2∙2B2∙3B3∙1B3∙2B3∙3
T=A4B2T
由两个二阶张量点乘与矩阵乘法的对应关系也可得到:张量点积不可随意更换次序,即
A
∙
B
≠
B
∙
A
\bold{A}\bullet\bold{B}\ne\bold{B}\bullet\bold{A}
A∙B=B∙A另外,可借助张量点积与矩阵乘法的对应关系推导出如下类似于矩阵乘法与矩阵转置关系的张量点积与张量转置的关系式:
(
A
3
B
3
)
T
=
(
B
3
)
T
(
A
3
)
T
=
(
B
T
)
2
(
A
T
)
2
⟺
(
A
∙
B
)
T
=
B
T
∙
A
T
(A_3B_3)^T=(B_3)^T(A_3)^T=(B^T)_2(A^T)_2 \Longleftrightarrow (\bold{A}\bullet\bold{B})^T=\bold{B}^T\bullet\bold{A}^T
(A3B3)T=(B3)T(A3)T=(BT)2(AT)2⟺(A∙B)T=BT∙AT张量点积的行列式与张量行列式的关系式:
d
e
t
(
A
3
B
3
)
=
d
e
t
(
A
3
)
d
e
t
(
B
3
)
⟺
d
e
t
(
A
∙
B
)
=
d
e
t
(
A
)
d
e
t
(
B
)
det(A_3B_3)=det(A_3)det(B_3) \Longleftrightarrow det(\bold{A}\bullet\bold{B})=det(\bold{A})det(\bold{B})
det(A3B3)=det(A3)det(B3)⟺det(A∙B)=det(A)det(B)文章来源:https://www.toymoban.com/news/detail-444642.html
2. 正则二阶张量与可逆矩阵
若二阶张量
T
\bold T
T 的矩阵可逆,则称二阶张量正则,反之称作退化的二阶张量。
显然,二阶张量正则的充要条件为二阶张量的行列式不为零
则有:
T
\bold T
T如果正则,那么
T
T
\bold T^T
TT也正则。
另外,根据正则张量、张量点积与可逆矩阵、矩阵乘法的对应关系可知:对于正则的二阶张量
T
\bold{T}
T,必唯一存在正则的二阶张量
T
−
1
\bold{T}^{-1}
T−1,使得:
T
∙
T
−
1
=
T
−
1
∙
T
=
G
(
1
)
\bold{T}\bullet\bold{T}^{-1}=\bold{T}^{-1}\bullet\bold{T}=\bold{G}\qquad(1)
T∙T−1=T−1∙T=G(1)将
T
−
1
\bold{T}^{-1}
T−1称作正则张量
T
\bold{T}
T的逆张量,且逆张量的矩阵等于原张量矩阵的逆,即
(
τ
−
1
)
3
=
(
τ
3
)
−
1
(\tau^{-1})_3=(\tau_3)^{-1}
(τ−1)3=(τ3)−1则,
d
e
t
[
(
τ
−
1
)
3
]
=
d
e
t
[
(
τ
3
)
−
1
]
=
1
d
e
t
(
τ
3
)
⟺
d
e
t
(
T
−
1
)
=
1
d
e
t
(
T
)
det[(\tau^{-1})_3]=det[(\tau_3)^{-1}]=\frac{1}{det(\tau_3)} \Longleftrightarrow det(\bold{T}^{-1})=\frac{1}{det(\bold{T})}
det[(τ−1)3]=det[(τ3)−1]=det(τ3)1⟺det(T−1)=det(T)1此外,进一步根据(1)式可得:
(
T
−
1
)
−
1
=
T
G
T
=
(
T
∙
T
−
1
)
T
=
(
T
−
1
)
T
∙
T
T
=
G
=
(
T
T
)
−
1
∙
T
T
(\bold{T}^{-1})^{-1}=\bold{T}\\\ \\ \bold{G}^T =(\bold{T}\bullet\bold{T}^{-1})^T =(\bold{T}^{-1})^T\bullet\bold{T}^T =\bold{G} =(\bold{T}^T)^{-1}\bullet\bold{T}^T
(T−1)−1=T GT=(T∙T−1)T=(T−1)T∙TT=G=(TT)−1∙TT由逆张量的唯一性可知:
(
T
T
)
−
1
=
(
T
−
1
)
T
(\bold{T}^T)^{-1}=(\bold{T}^{-1})^T
(TT)−1=(T−1)T若二阶张量线性变换可逆,则:
w
⃗
=
τ
3
u
⃗
⟺
w
⃗
=
T
∙
u
⃗
u
⃗
=
(
τ
3
)
−
1
w
⃗
=
(
τ
−
1
)
3
w
⃗
⟺
u
⃗
=
T
−
1
∙
w
⃗
\vec{w}=\tau_3\vec{u} \Longleftrightarrow \vec{w}=T\bullet\vec{u}\\\ \\ \vec{u}=(\tau_3)^{-1}\vec{w}=(\tau^{-1})_3\vec{w} \Longleftrightarrow \vec{u}=T^{-1}\bullet\vec{w}
w=τ3u⟺w=T∙u u=(τ3)−1w=(τ−1)3w⟺u=T−1∙w文章来源地址https://www.toymoban.com/news/detail-444642.html
到了这里,关于(八)二阶张量与矩阵(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!