基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

这篇具有很好参考价值的文章主要介绍了基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.研究背景

疲劳驾驶成为了导致交通事故发生的重要因素之一,并呈现出逐年递增的趋势,若能设计出一种在驾驶员发生疲劳时,就能检测出驾驶员处于疲劳状态对其进行警告,这样就可以较好地降低交通事故的发生的概率.论文介绍了一种检测驾驶员在驾驶过程中是否为疲劳驾驶的方法,基于PERCLOS对驾驶员进行疲劳检测.首先对设备采集的人脸图像进行肤色分割,根据程序中设定的肤色阈值,确定图像中属于肤色的区域,对得到的肤色区域进行眼睛追踪,人脸特征部位进行积分投影操作,获取眼睛区域,捕捉眼睛的实时状态,并对眼睛的面积进行计算,最后根据疲劳值来判定疲劳状态.根据实验证明,该方法满足车载、实时、非接触的基本要求,并能准确地做出对驾驶员驾驶过程中是否出现疲劳的判定.

2.图片演示

基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

3.视频演示

基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(哈欠&喝水&抽烟&打电话检测)_哔哩哔哩_bilibili

4.算法流程图

基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

5.PERCLOS测试原理

参考该博客提出的方案,PERCLOS(Percentage of Eyelid Closure Overthe Pupil Over Time)的含义是指在单位时间内眼睛闭合状态下所占用的时间百分比[4]
基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)
结合图 1 可以较为容易地理解其测量原理。根据下面的计算公式,通过测量 t1~t4 的值来计算
PERCLOS的值。
基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)
其中 f 为计算后求得的 PERCLOS 值,t1~t4 代表的[图片上传中…(image.png-f4d849-1669187187473-0)]
含义如测量原理图所示,表示时间区间内眼睛开闭程度。在具体实验中 PERCLOS 有三种度量标准,即为 P70、P80、EM,分别代表眼睛在不同闭合程度下所占用的时间百分比。其中 P80 指的是在测试过程中,检测对象的眼睛闭合面积超过80%所占用的时间百分比。大量研究表明,在三种度量标准中对疲劳驾驶的检测准确率最高的是P80[5]标准。因此本文采用此标准进行疲劳判定,计算公式如下:
基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)
用此方法追踪眼睛状态时,由摄像头对驾驶员的头部区域进行捕获,对采集过程中可能出现的过暗图像加上光照补偿,采取YCbCr对肤色进行分割来确定人脸区域,对眼部轮廓进行提取,运用图像处理来判断眼睛的开闭状态。定义检测过程中人物眼睛睁开程度只要满足大于20%这个条件,就记为睁开状态,反之为闭合。

6.人脸眼睛、嘴巴开闭状态、喝水抽烟打电话检测

YOLOv7

YOLOv7是YOLO系列中最先进的新型目标检测器。根据论文所述,它是迄今为止最快、最准确的实时目标检测器,最好的模型获得了56.8%的平均精度(AP),这是所有已知目标检测器中最高的,各种模型的速度范围在 5~160 FPS。

本文主要介绍简化的YOLOv7论文解读和推理测试以及YOLOv7与 YOLO系列的其他目标检测器的比较。

YOLOv7通过将性能提升一个档次建立了重要的基准。从YOLOv4开始在极短的时间内,我们看到YOLO家族的新成员接踵而至。每个版本都引入了一些新的东西来提高性能。早些时候,我们已经详细讨论了以前的 YOLO 版本。
不同的应用需要不同的模型。虽然有些人需要高度准确的模型,但有些人优先考虑速度。执行模型缩放以适应这些要求并使其适合各种计算设备。
在缩放模型大小时,会考虑以下参数:
1.分辨率(输入图像的大小)
2.宽度(通道数)
3.深度(网络层数)
4.阶段(特征金字塔的数量)
NAS(Network Architecture Search)是一种常用的模型缩放方法。研究人员使用它来迭代参数以找到最佳比例因子。但是,像 NAS 这样的方法会进行参数特定的缩放。在这种情况下,比例因子是独立的。

YOLOv7论文的作者表明,它可以通过复合模型缩放方法进一步优化。在这里,对于基于连接的模型,宽度和深度是连贯地缩放的。
基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

算法改进

YOLOv7 改进特征融合网络BiFPN结构 ,参考EfficientDet中提出的加权的双向特征金字塔网络,它允许简单和快速的多尺度特征融合。为了追求更高效的多尺度融合方式。以往的特征融合是平等地对待不同尺度特征,CVPR 2017的FPN指出了不同层之间特征融合的重要性,并且以一种比较简单,Heuristic的方法把底层的特征乘两倍和浅层相加来融合。之后人们也试了各种别的融合方法,比如PANet先从底向上连,再自顶向下连回去(上图b);NAS-FPN 采用神经架构搜索来搜索更好的跨尺度特征网络拓扑,但是在搜索过程中需要花费数千个GPU小时,并且发现的网络不规则,难以解释或修改,如上图 ( c )所示。总之上述都是一些人工各种连接的设计,包含Conv,Sum,Concatenate,Resize,Skip Connection等候选操作。很明显使用哪些操作、操作之间的顺序是可以用NAS搜的。
基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)

代码实现
class Concat(nn.Module):
    # Concatenate a list of tensors along dimension
    def __init__(self, c1, c2):
        super(Concat, self).__init__()
        # self.relu = nn.ReLU()
        self.w1 = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
        self.w2 = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
        self.epsilon = 0.0001
        self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
        self.swish = MemoryEfficientSwish()

    def forward(self, x):
        outs = self._forward(x)
        return outs

    def _forward(self, x): # intermediate result
        if len(x) == 2:
            # w = self.relu(self.w1)
            w = self.w1
            weight = w / (torch.sum(w, dim=0) + self.epsilon)
            x = self.conv(self.swish(weight[0] * x[0] + weight[1] * x[1]))
        elif len(x) == 3: # final result
            # w = self.relu(self.w2)
            w = self.w2
            weight = w / (torch.sum(w, dim=0) + self.epsilon)
            x = self.conv(self.swish(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))

7.系统整合

下图完整源码&环境部署视频教程&数据集&自定义UI界面
基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)
参考博客《基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)》

8.参考文献


[1]荔小虎,唐晶磊.基于肤色匹配和积分投影结合的人眼定位方法研究[J].自动化应用.2018,(12).DOI:10.3969/j.issn.1674-778X.2018.12.026.

[2]杨恒,张再军,杨东,等.融合YCbCr肤色模型与区域标记的人脸检测算法研究[J].软件导刊.2016,(2).DOI:10.11907/rjdk.161028.

[3]牛清宁,周志强,金立生,等.基于眼动特征的疲劳驾驶检测方法[J].哈尔滨工程大学学报.2015,(3).DOI:10.3969/j.issn.1006-7043.201311044.

[4]何光辉,张太平.局部匹配的人脸识别方法[J].重庆大学学报:自然科学版.2012,(12).

[5]杨超,李博文.基于积分投影的眼睛定位系统设计[J].软件导刊.2011,(9).

[6]于兴玲,王民,张立材.基于PERCLOS的驾驶员眼睛状态检测方法[J].微计算机信息.2007,(14).DOI:10.3969/j.issn.1008-0570.2007.14.103.

[7]李杰,郝晓莉.一种基于椭圆肤色模型的人脸检测方法[J].计算机测量与控制.2006,(2).DOI:10.3969/j.issn.1671-4598.2006.02.012.

[8]李志春,何仁,林谋有,等.驾驶员疲劳检测技术的研究现状及发展趋势[J].农机化研究.2006,(5).DOI:10.3969/j.issn.1003-188X.2006.05.068.

[9]冯建强,刘文波,于盛林.基于灰度积分投影的人眼定位[J].计算机仿真.2005,(4).DOI:10.3969/j.issn.1006-9348.2005.04.021.

[10]王文成,常发亮.一种基于区域投影的人眼精确定位方法[J].光电子·激光.2011,(4).文章来源地址https://www.toymoban.com/news/detail-444735.html

到了这里,关于基于Perclos&改进YOLOv7的疲劳驾驶DMS检测系统(源码&教程)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于YOLOv7的密集场景行人检测识别分析系统

    密集场景下YOLO系列模型的精度如何?本文的主要目的就是想要基于密集场景基于YOLOv7模型开发构建人流计数系统,简单看下效果图:  这里实验部分使用到的数据集为VSCrowd数据集。 实例数据如下所示:   下载到本地解压缩后如下所示: annotations/目录下存放的是标注数据文

    2024年02月13日
    浏览(48)
  • 基于YOLOv7开发构建MSTAR雷达影像目标检测系统

    MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集是一个基于合成孔径雷达(Synthetic Aperture Radar,SAR)图像的目标检测和识别数据集。它是针对目标检测、机器学习和模式识别算法的研究和评估而设计的。 MSTAR数据集由美国海军研究实验室(Naval Research Laboratory,NRL)

    2024年02月14日
    浏览(41)
  • 计算机设计大赛 疲劳驾驶检测系统 python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:/

    2024年03月12日
    浏览(53)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的布匹缺陷检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的布匹缺陷检测系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的布匹缺陷。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集

    2024年03月15日
    浏览(65)
  • 基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的快递包裹检测系统(Python+PySide6界面+训练代码)

    摘要:本文介绍了一种基于深度学习的快递包裹检测系统的代码,采用最先进的YOLOv8算法并对比YOLOv7、YOLOv6、YOLOv5等算法的结果,能够准确识别图像、视频、实时视频流以及批量文件中的快递包裹。文章详细解释了YOLOv8算法的原理,并提供了相应的Python实现代码、训练数据集

    2024年03月28日
    浏览(52)
  • 机器视觉毕业设计 深度学习驾驶人脸疲劳检测系统 - python opencv

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月07日
    浏览(113)
  • 竞赛保研 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:/

    2024年01月21日
    浏览(80)
  • 基于pyqt5、mysql、yolov7、chatgpt的小麦病害检测系统v1.0

    运行 Python安装目录下 Scriptspyqt5designer.exe 这个可执行文件 1.2创建用户主窗体 进入设计界面创建一个main window 拖动添加控件,创建用户主窗体 具体每个控件怎么使用可以咨询:robot 创建 qdockwidget ,拖动添加控件,创建用户子窗体——检测功能窗体 ……创建其他功能子窗体 进

    2024年02月09日
    浏览(44)
  • 竞赛 深度学习驾驶行为状态检测系统(疲劳 抽烟 喝水 玩手机) - opencv python

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的驾驶行为状态检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/d

    2024年01月21日
    浏览(72)
  • 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 -python 计算机竞赛

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习 驾驶人脸疲劳检测系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https:/

    2024年02月05日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包