卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

这篇具有很好参考价值的文章主要介绍了卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。随着小卫星星座的普及,对地观测已具备多次以上的全球覆盖能力,遥感影像也不断被更深入的应用于矿产勘探、精准农业、城市规划、林业测量、军事目标识别和灾害评估。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。

另一方面,随着无人机自动化能力的逐步升级,它被广泛的应用于多种领域,如航拍、农业、植保、灾难评估、救援、测绘、电力巡检等。但同时由于无人机飞行高度低、获取目标类型多、以及环境复杂等因素使得对无人机获取的数据处理越来越复杂。

  面对这些挑战,当前基于卷积神经网络的影像自动识别取得了令人印象深刻的结果。深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征(这种特征被称为“学习特征”),是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。同时,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的模型。虽然以PyTorch为主体的深度学习平台为使用卷积神经网络也提供程序框架。但卷积神经网络涉及到的数学模型和计算机算法都十分复杂、运行及处理难度很大,PyTorch平台的掌握也并不容易。

点击查看原文

专题一:深度卷积网络知识详解

1. 深度学习在遥感图像识别中的范式和问题

2. 深度学习的历史发展历程

3. 机器学习,深度学习等任务的基本处理流程

4. 卷积神经网络的基本原理

5. 卷积运算的原理和理解

6. 池化操作,全连接层,以及分类器的作用

7. BP反向传播算法的理解

8. CNN模型代码详解

9. 特征图,卷积核可视化分析

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题二:PyTorch应用与实践(遥感图像场景分类)

1. PyTorch简介

2. 动态计算图,静态计算图等机制

3. PyTorch的使用教程

4. PyTorch的学习案例

5. PyTorch的基本使用与API

6.PyTorch图像分类任务讲解

7.不同超参数,如初始化,学习率对结果的影响

8.使用PyTorch搭建神经网络并实现手写数字的分类

9.使用PyTorch修改模型并提升分类模型表现

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题三:卷积神经网络实践与目标检测

1. 深度学习下的遥感影像目标检测基本知识

2. 目标检测数据集的图像和标签表示方式

3. 讲解目标检测模型的评估方案,包括正确率,精确率,召回率,mAP等

4. 无人机影像的植物识别和统计

5. 讲解two-stage(二阶)检测模型框架,RCNN, Fast RCNN, Faster RCNN等框

6. 架的演变和差异

7. 讲解 one-stage(一阶)检测模型框架,SDD ,Yolo等系列模型

8. 现有检测模型「CNN系列」发展小结,包括OHEM、FCN、DCN等模型

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题四:卷积神经网络的遥感影像目标检测任务案例

【FasterRCNN】

1. 一份完整的Faster-RCNN 模型下实现遥感影像的目标检测

2. 讲解数据集的制作过程,包括数据的存储和处理

3. 数据集标签的制作

4. 模型的搭建,组合和训练

5. 检测任数据集在验证过程中的注意事项

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题五:Transformer与遥感影像目标检测

1. 从卷积运算到自注意力运算 self-attention

2. pytorch实现的自监督模块

3. 从Transformer到Vision Transformer (ViT)

4. ViT模型在遥感影像中的应用

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题六:Transformer的遥感影像目标检测任务案例 【DETR】

1. Transformer下的新目标检测范式,DETR

2. 各类模型在遥感影像下的对比和调研

3. 一份完整的DETR模型下实现遥感影像的目标检测

4. 讲解针对检测任务的优化策略

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题七:深度学习与遥感影像分割任务

1. 深度学习下的遥感影像分割任务的基本概念

2. 讲解FCN,SegNet,U-net等模型的差异

3. 分割模型的发展小结

4. 遥感影像分割任务和图像分割的差异

5. 在遥感影像分割任务中的注意事项

 

案例

² 讲解数据集的准备和处理

² 遥感影像划分成小图像的策略

² 模型的构建和训练方法

² 验证集的使用过程中的注意事项

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题八:深度学习下的ASL(机载激光扫描仪)点云数据语义分类任务的基本知识

1. PointNet与PointNet++等模型的基本讲解

2. 点云数据的预处理和划分

3. 点云数据的语义分割

4. 点云数据的预测结果分析

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

专题九:遥感影像问题探讨与深度学习优化技巧

1. 现有几个优秀模型结构的演变原理,包括AlexNet,VGG,googleNet,ResNet,DenseNet等模型

2. 从模型演变中讲解实际训练模型的技巧

3. 讲解针对数据的优化策略

4. 讲解针对模型的优化策略

5. 讲解针对训练过程的优化策略

6. 讲解针对检测任务的优化策略

7. 讲解针对分割任务的优化策略

8. 提供一些常用的检测,分割数据集的标注工具

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类

点击查看原文

阅读推荐:

GEE遥感云大数据林业应用典型案例实践及GPT模型应用
 

GPT模型支持下的Python-GEE遥感云大数据分析、管理与可视化技术及多领域案例实践应用

基于Python长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析

无人机遥感在农林信息提取中的实现方法与 GIS 融合制图

无人机生态环境监测、图像处理与 GIS 数据分析综合应用文章来源地址https://www.toymoban.com/news/detail-444902.html

到了这里,关于卷积神经网络(CNN):基于PyTorch的遥感影像、无人机影像的地物分类、目标检测、语义分割和点云分类的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Pytorch】计算机视觉项目——卷积神经网络CNN模型识别图像分类

    在上一篇笔记《【Pytorch】整体工作流程代码详解(新手入门)》中介绍了Pytorch的整体工作流程,本文继续说明如何使用Pytorch搭建卷积神经网络(CNN模型)来给图像分类。 其他相关文章: 深度学习入门笔记:总结了一些神经网络的基础概念。 TensorFlow专栏:《计算机视觉入门

    2024年02月05日
    浏览(57)
  • AI:89-基于卷积神经网络的遥感图像地物分类

    🚀 本文选自专栏:人工智能领域200例教程专栏 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 ✨✨✨ 每一个案例都附带有在本地跑过的核心代码,详细讲解供大家学习,希望可以帮到大家。欢迎订阅支持,

    2024年02月04日
    浏览(46)
  • 卷积神经网络CNN原理+代码(pytorch实现MNIST集手写数字分类任务)

    前言 若将图像数据输入全连接层,可能会导致丧失一些位置信息 卷积神经网络将图像按照原有的空间结构保存,不会丧失位置信息。 卷积运算: 1.以单通道为例: 将将input中选中的部分与kernel进行数乘 : 以上图为例对应元素相乘结果为211,并将结果填入output矩阵的左上角

    2024年02月04日
    浏览(62)
  • Pytorch 与 Tensorflow对比学习 第3周:进阶主题 Day 15-16: 卷积神经网络(CNN)

    第3周:进阶主题 Day 15-16: 卷积神经网络(CNN) 在这两天中,我专注于学习卷积神经网络(CNN)的基础知识,包括卷积层和池化层的工作原理以及它们在图像处理中的应用。 卷积神经网络基础: 卷积层:学习了卷积层如何通过滤波器(或称为核)提取图像的特征。每个滤波器

    2024年01月20日
    浏览(45)
  • CNN卷积神经网络实现手写数字识别(基于tensorflow)

    卷积网络的 核心思想 是将: 局部感受野 权值共享(或者权值复制) 时间或空间亚采样 卷积神经网络 (Convolutional Neural Networks,简称: CNN )是深度学习当中一个非常重要的神经网络结构。它主要用于用在 图像图片处理 , 视频处理 , 音频处理 以及 自然语言处理 等等。

    2024年02月11日
    浏览(42)
  • 基于卷积神经网络CNN的图片分类实现——附代码

    目录 摘要: 1.卷积神经网络介绍: 2.卷积神经网络(CNN)构建与训练: 2.1 CNN的输入图像 2.2 构建CNN网络 2.3 训练CNN网络 3.卷积神经网络(CNN)的实际分类测试: 4.本文Matlab实验代码: 使用Matlab自带的深度学习工具箱构建卷积神经网络(CNN)进行图片分类,以识别并分类手写

    2024年02月02日
    浏览(49)
  • 【机器学习】基于卷积神经网络 CNN 的猫狗分类问题

    卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。 顾名思义,就是将卷积与前馈神经网络结合,所衍生出来的一种深度学习算法。 卷积神经网络CNN的结构图

    2024年02月17日
    浏览(45)
  • 基于MATLAB的CNN卷积神经网络的训练和测试

    目录 一、理论基础 二、核心程序 三、测试结果         卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。卷积神经网络具有表征学习(representation learning)

    2024年02月01日
    浏览(42)
  • 验证码识别系统Python,基于CNN卷积神经网络算法

    验证码识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,基于Pyqt5搭建桌面端操作界面,实现用户上传一张图片识别其名称。

    2024年02月09日
    浏览(64)
  • 文本分类系统Python,基于深度学习CNN卷积神经网络

    文本分类系统,使用Python作为主要开发语言,通过TensorFlow搭建CNN卷积神经网络对十余种不同种类的文本数据集进行训练,最后得到一个h5格式的本地模型文件,然后采用Django开发网页界面,实现用户在界面中输入一段文字,识别其所属的文本种类。 在我们的日常生活和工作中

    2024年02月08日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包