【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

这篇具有很好参考价值的文章主要介绍了【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文章


💥1 概述

文献来源:

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

摘要本文提出了一种考虑冷、热、电多能负荷不确定性的区域综合能源系统鲁棒规划方法。基于改进的能源枢纽(EH)模型,建立了包括热电联产、电锅炉、燃气锅炉、电冷水机组、吸收式冷水机组、蓄电池、蓄热、冷库在内的区域综合能源系统模型。另外,引入0-1设备选择变量,对各设备的容量进行选择和优化。采用多面体集描述多能负荷的不确定性,建立鲁棒规划模型并进行等效转换。最后,通过MATLAB编程实现了容量规划模型,并利用CPLEX求解最优配置。结果表明,系统规划的稳健性可以通过鲁棒性措施来控制,最优规划能够保证系统的可靠性和经济性。这也体现了IES的多能互补集成优化效益。

关键词:综合能源系统;多能互补;不确定性

原文摘要:

Abstract—In this paper, we propose a robust planning method for regional integrated energy systems(IES) considering the uncertainty of cold, hot and electric multi-energy loads. Based on the improved energy hub (EH) model, we established a regional integrated energy system model, which includes CHP, electric boilers, gas boilers, electric chiller, absorption chiller, battery, thermal storage and cold storage. In addition, 0-1 variable of equipment selection is introduced to select and optimize the capacity of each equipment. The polyhedron set is used to describe the uncertainty of multi-energy load, and a robust planning model is formed and equivalent transformed. Finally, the capacity planning model is realized by programming in MATLAB, and the optimal configuration is solved by CPLEX. The result shows that the conservatism of system planning can be controlled by robust measure, and the optimal plan can guarantee reliability and economy of the system at the same time. It also reflects the multi energy complementary integration optimization benefits of IES. 
Keywords—Integrated energy system, multi energy complementary, uncertainty, robust planning 

IES的结构可分为三个主要部分:能量供应、能量转换和能量储存。每个部分由特定的能量耦合设备组成,并连接成一个整体。IES规划模型可以用图1所示的结构来描述。

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

 可以看到,IES与电网、燃气网和冷热网相连。它将电能、燃气和可再生能源等能源形式转化为电能、冷能和热能。由计划决定的能量流部分用虚线表示。供能部分包括光伏发电装置和电网。能量转换部分包括热电联产、燃气锅炉、电锅炉、吸收式冷水机组和电冷水机组。储能部分包括蓄电池、蓄热和冷库。这些设备的类型需要规划,不同类型的设备在容量、成本和转换效率上存在差异。

📚2 运行结果

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码) 【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

Python 部分代码:

print('目标函数构建完成!')

print('优化计算求解中!')
# 问题选用Pulp选择的Solver进行求解
prob.solve(GUROBI()) # 目前用GLPK()求解大概要7 min+, 如果用CPLEX() 和 GUROBI() 会快很多

# 输出求解结果
for v in prob.variables():
    print(v.name, "=", v.varValue)
    # v.evaluate()
    # np.savetxt(v.name,v.values,fmt='%.4e',delimiter=',')
print("Total Cost = ", value(prob.objective))

# 保存机组选型优化结果 到 X.values 里,是一个ndarray
X_CCHP.evaluate()
X_GB.evaluate()
X_AC.evaluate()
X_EB.evaluate()
X_SUB.evaluate()

# 保存机组耗电耗气连续变量优化结果 到 X.values 里,是一个ndarray
P_CCHP_gas.evaluate()   # CCHP单位时间内所用燃气热值,单位是MW(应该修改成kw比较合适)
V_CCHP_gas.evaluate()    # CCHP单位时间内所用燃气量,单位是m3/h
P_SUB_electricity.evaluate()     # 变电站出力,单位是MW
P_GB_gas.evaluate()        # GB单位时间内所用燃气热值,单位是MW
V_GB_gas.evaluate()        # GB单位时间内所用燃气量,单位是m3/h
P_AC_electricity.evaluate() # 中央空调输入电出力,单位MW
P_EB_electricity.evaluate() # 电锅炉输入电能,单位MW
print('目标函数构建完成!')

print('优化计算求解中!')
# 问题选用Pulp选择的Solver进行求解
prob.solve(GUROBI()) # 目前用GLPK()求解大概要7 min+, 如果用CPLEX() 和 GUROBI() 会快很多

# 输出求解结果
for v in prob.variables():
    print(v.name, "=", v.varValue)
    # v.evaluate()
    # np.savetxt(v.name,v.values,fmt='%.4e',delimiter=',')
print("Total Cost = ", value(prob.objective))

# 保存机组选型优化结果 到 X.values 里,是一个ndarray
X_CCHP.evaluate()
X_GB.evaluate()
X_AC.evaluate()
X_EB.evaluate()
X_SUB.evaluate()

# 保存机组耗电耗气连续变量优化结果 到 X.values 里,是一个ndarray
P_CCHP_gas.evaluate()   # CCHP单位时间内所用燃气热值,单位是MW(应该修改成kw比较合适)
V_CCHP_gas.evaluate()    # CCHP单位时间内所用燃气量,单位是m3/h
P_SUB_electricity.evaluate()     # 变电站出力,单位是MW
P_GB_gas.evaluate()        # GB单位时间内所用燃气热值,单位是MW
V_GB_gas.evaluate()        # GB单位时间内所用燃气量,单位是m3/h
P_AC_electricity.evaluate() # 中央空调输入电出力,单位MW
P_EB_electricity.evaluate() # 电锅炉输入电能,单位MW

Matlab部分代码:

%% 模型变量声明
%0-1机组建设决策变量
X_CCHP=binvar(1,CCHP_types,'full');
X_GB=binvar(1,GB_types,'full');
X_AC=binvar(1,AC_types,'full');
X_EB=binvar(1,EB_types,'full');
X_SUB=binvar(1,SUB_types,'full');
%机组耗电耗气连续变量
P_CCHP_gas=sdpvar(Load_scene,CCHP_types,'full');    %CCHP单位时间内所用燃气热值,单位是MW(应该修改成kw比较合???)
V_CCHP_gas=sdpvar(Load_scene,CCHP_types,'full');    %CCHP单位时间内所用燃气量,单位是m3/h
P_SUB_electricity=sdpvar(Load_scene,SUB_types,'full');      %变电站出力,单位是MW
P_GB_gas=sdpvar(Load_scene,GB_types,'full');        %GB(燃气锅炉)单位时间内所用燃气热值,单位是MW
V_GB_gas=sdpvar(Load_scene,GB_types,'full');        %GB单位时间内所用燃气量,单位是m3/h
P_AC_electricity=sdpvar(Load_scene,AC_types,'full'); %中央空调输入电出力,单位MW
P_EB_electricity=sdpvar(Load_scene,EB_types,'full');%电锅炉输入电能,单位MW
%% 约束条件
Constraints=[];   
%%
Cons_PL=[];
P=sdpvar(SUB_types+CCHP_types+GB_types+AC_types+EB_types,Load_scene,'full');
for t=1:Load_scene  %P为输入矩阵
    Cons_PL=[ Cons_PL,P(:,t)==[P_SUB_electricity(t,:)';P_CCHP_gas(t,:)';P_GB_gas(t,:)';P_AC_electricity(t,:)';P_EB_electricity(t,:)']];%注意这里是等号==
end

L=sdpvar(3,Load_scene,'full');  %L为输出矩阵
for t=1:Load_scene  %8个典型日的电、气、热
    Cons_PL=[Cons_PL,L(:,t)==[Load_E(t)+sum(P_AC_electricity(t,:),2)+sum(P_EB_electricity(t,:),2);Load_C(t);Load_H(t)]];
end
Constraints=[Constraints,Cons_PL];
%==============负荷平衡,公式5================

%% 模型变量声明
%0-1机组建设决策变量
X_CCHP=binvar(1,CCHP_types,'full');
X_GB=binvar(1,GB_types,'full');
X_AC=binvar(1,AC_types,'full');
X_EB=binvar(1,EB_types,'full');
X_SUB=binvar(1,SUB_types,'full');
%机组耗电耗气连续变量
P_CCHP_gas=sdpvar(Load_scene,CCHP_types,'full');    %CCHP单位时间内所用燃气热值,单位是MW(应该修改成kw比较合???)
V_CCHP_gas=sdpvar(Load_scene,CCHP_types,'full');    %CCHP单位时间内所用燃气量,单位是m3/h
P_SUB_electricity=sdpvar(Load_scene,SUB_types,'full');      %变电站出力,单位是MW
P_GB_gas=sdpvar(Load_scene,GB_types,'full');        %GB(燃气锅炉)单位时间内所用燃气热值,单位是MW
V_GB_gas=sdpvar(Load_scene,GB_types,'full');        %GB单位时间内所用燃气量,单位是m3/h
P_AC_electricity=sdpvar(Load_scene,AC_types,'full'); %中央空调输入电出力,单位MW
P_EB_electricity=sdpvar(Load_scene,EB_types,'full');%电锅炉输入电能,单位MW
%% 约束条件
Constraints=[];   
%%
Cons_PL=[];
P=sdpvar(SUB_types+CCHP_types+GB_types+AC_types+EB_types,Load_scene,'full');
for t=1:Load_scene  %P为输入矩阵
    Cons_PL=[ Cons_PL,P(:,t)==[P_SUB_electricity(t,:)';P_CCHP_gas(t,:)';P_GB_gas(t,:)';P_AC_electricity(t,:)';P_EB_electricity(t,:)']];%注意这里是等号==
end

L=sdpvar(3,Load_scene,'full');  %L为输出矩阵
for t=1:Load_scene  %8个典型日的电、气、热
    Cons_PL=[Cons_PL,L(:,t)==[Load_E(t)+sum(P_AC_electricity(t,:),2)+sum(P_EB_electricity(t,:),2);Load_C(t);Load_H(t)]];
end
Constraints=[Constraints,Cons_PL];
%==============负荷平衡,公式5================

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)文章来源地址https://www.toymoban.com/news/detail-445341.html

🌈4 Python代码、数据、文章

到了这里,关于【英】考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【鲁棒优化】具有可再生能源和储能的区域微电网的最优运行:针对不确定性的鲁棒性和非预测性解决方案(Matlab代码实现)

      💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码、数据、文

    2024年02月08日
    浏览(46)
  • 【五】头歌平台实验-不确定性推理

    在现实世界中的事物以及事物之间的关系是极其复杂的。由于客观上存在的随机性、模糊性以及某些事物或现象暴露得不充分性,导致人们对它们的认识往往是不精确、不完全的,具有一定程度的不确定性。这种认识上的的不确定性反映到知识以及由观察所得到的证据上来,

    2024年02月02日
    浏览(51)
  • FPGA时序分析与约束(3)——时钟不确定性

            在之前的文章中,我们介绍了组合电路的时序和时序电路的时序问题,在阅读本文章之前,强烈推荐先阅读完本系列之前的文章,因为这是我们继续学习的理论的理论基础,前文链接: FPGA时序分析与约束(2)——时序电路时序         本文我们将介绍时钟相关

    2024年02月10日
    浏览(42)
  • 架构中保障交付关键动作之降低不确定性

    不确定性的来源有多个方面。 首先是目标的不确定性 。这主要是赞助方对目标的不确定而导致的。 第二是资源的不确定性 。这是互联网时代架构师所面临的最大挑战。无论是国内还是国外的互联网企业,往往通过类似于虚拟机超卖的方案去刺激团队的产出。 企业往往会同

    2024年02月02日
    浏览(53)
  • 贝叶斯神经网络 - 捕捉现实世界的不确定性

    贝叶斯神经网络 - 捕捉现实世界的不确定性 Bayesian Neural Networks 生活本质上是不确定性和概率性的,贝叶斯神经网络 (BNN) 旨在捕获和量化这种不确定性 在许多现实世界的应用中,仅仅做出预测是不够的;您还想知道您对该预测的信心有多大。例如,在医疗保健领域,如果模型

    2024年02月10日
    浏览(36)
  • 动态不确定性的动态S过程(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来

    2024年02月11日
    浏览(51)
  • 【经济研究】论文《经济ZC不确定性与创新》数据复现

    数据简介 :当前宏观经济面临较大下行压力,需要“稳中求进”兼顾经济高质量发展与经济增速等多种目标,这就不可避免地导致各种经济ZC的频繁调整,产生不确定性风险。在此背景下,经济政策不确定性上升如何影响企业决策,进而是否会阻碍中国创新驱动发展战略有效

    2024年02月10日
    浏览(52)
  • 一种融合偶然和认知不确定性的贝叶斯深度学习RUL框架

    _ 原文: _ 《《A Bayesian Deep Learning RUL Framework Integrating Epistemic and Aleatoric Uncertainties》 _ 作者 __ : _ Gaoyang Lia,Li Yangb,Chi-Guhn Leec,Xiaohua Wangd,Mingzhe Ronge _ 作者单位: _ _a. School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University _ b. B

    2024年02月08日
    浏览(52)
  • 【人工智能的数学基础】深度学习中的不确定性(Uncertainty)

    使用贝叶斯深度学习建模深度学习中的不确定性. paper:What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 现有的深度学习方法大多只能给出特定的预测结果,而不能给出结果的不确定性程度。 深度学习中输出结果的不确定性主要有两种: 偶然不确定性 是由数据中的

    2024年02月07日
    浏览(58)
  • 人工智能_不确定性推理(5,证据理论 6,模糊推理方法 7,模糊控制)

    4.5 证据理论 证据理论(theory of evidence):又称D一S理论,是德普斯特(APDempster)首先提出,沙佛(GShafer)进一步发展起来的一种处理不确定性的理论 D-S证据推理针对的是6分不清”或“不知道”这样的不确定性; 1981年巴纳特(JABarnett)把该理论引入专家系统中,同年卡威(JGarvey)等人用它

    2024年02月03日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包