考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

这篇具有很好参考价值的文章主要介绍了考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、文章


💥1 概述

文献来源:

考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

 多能互补集成优化的综合能源系统(integrated energy system , IES)是能源互联网的重要发展方向之一E1-9]。能源互联网是“推动分布式可再生能源的大规模利用与分享,促进电力、交通、天然气等多种复杂网络系统的相互融合”的综合能源网络( comprehensive energy network)[ 6-7]。类似地,“综合能源系统”概念为电-冷-热-气多能互补集成优化的区域能源系统,涉及热电联供机组、变电站、配电馈线﹑供热站、供冷/热管道、供气站等设备的规划和运行。“多能互补”意在改变原有各能源供用系统各自规划设计、独立运行的现状,对不同供用能系统进行统一的协调优化。能源互联网中 IES的建设,对于提升社会用能效率、促进可再生能源规模化利用等都具有重要意义[8-9]。

具体到IES规划方法研究方面﹐目前的研究成果集中于不同背景、不同组成的多类型能源系统的建模与规划。例如,基于EH的考虑电/热/气多能耦合的规划L17-20],考虑多方利益主体、差异化用能需求的规划流程[2,考虑冷热电存储的区域综合能源站优化设计[22,结合热网模型的多区域协同规划[23],考虑采暖期和供冷期园区级别规划[24]、评估指标与方法[25]、能量整体运输模型[26]、评估指标与方法[2]等。然而,上述研究成果大部分未考虑其中的不确定性因素,或仅通过多场景方法19-21]考虑不确定性。

从能源供给方式的角度考虑,一般而言,区域IES包含变电站、热电联供机组﹑燃气锅炉/电锅炉、集中式制冷站等供能手段,能源的供给方式和需求形式都是多样化的。在描述IES的多能特性方面,EH模型已经受到广泛的认可。一个典型的基于EH的区域IES如图1所示。
考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

📚2 运行结果

考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)

 部分代码:

print('目标函数构建完成!')

print('优化计算求解中!')
# 问题选用Pulp选择的Solver进行求解
prob.solve(GUROBI()) # 目前用GLPK()求解大概要7 min+, 如果用CPLEX() 和 GUROBI() 会快很多

# 输出求解结果
for v in prob.variables():
    print(v.name, "=", v.varValue)
    # v.evaluate()
    # np.savetxt(v.name,v.values,fmt='%.4e',delimiter=',')
print("Total Cost = ", value(prob.objective))

# 保存机组选型优化结果 到 X.values 里,是一个ndarray
X_CCHP.evaluate()
X_GB.evaluate()
X_AC.evaluate()
X_EB.evaluate()
X_SUB.evaluate()

# 保存机组耗电耗气连续变量优化结果 到 X.values 里,是一个ndarray
P_CCHP_gas.evaluate()   # CCHP单位时间内所用燃气热值,单位是MW(应该修改成kw比较合适)
V_CCHP_gas.evaluate()    # CCHP单位时间内所用燃气量,单位是m3/h
P_SUB_electricity.evaluate()     # 变电站出力,单位是MW
P_GB_gas.evaluate()        # GB单位时间内所用燃气热值,单位是MW
V_GB_gas.evaluate()        # GB单位时间内所用燃气量,单位是m3/h
P_AC_electricity.evaluate() # 中央空调输入电出力,单位MW
P_EB_electricity.evaluate() # 电锅炉输入电能,单位MW

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]沈欣炜,郭庆来,许银亮等.考虑多能负荷不确定性的区域综合能源系统鲁棒规划[J].电力系统自动化,2019,43(07):34-41.文章来源地址https://www.toymoban.com/news/detail-445614.html

🌈4 Python代码、数据、文章

到了这里,关于考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Python代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【鲁棒优化】具有可再生能源和储能的区域微电网的最优运行:针对不确定性的鲁棒性和非预测性解决方案(Matlab代码实现)

      💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码、数据、文

    2024年02月08日
    浏览(47)
  • 【五】头歌平台实验-不确定性推理

    在现实世界中的事物以及事物之间的关系是极其复杂的。由于客观上存在的随机性、模糊性以及某些事物或现象暴露得不充分性,导致人们对它们的认识往往是不精确、不完全的,具有一定程度的不确定性。这种认识上的的不确定性反映到知识以及由观察所得到的证据上来,

    2024年02月02日
    浏览(52)
  • FPGA时序分析与约束(3)——时钟不确定性

            在之前的文章中,我们介绍了组合电路的时序和时序电路的时序问题,在阅读本文章之前,强烈推荐先阅读完本系列之前的文章,因为这是我们继续学习的理论的理论基础,前文链接: FPGA时序分析与约束(2)——时序电路时序         本文我们将介绍时钟相关

    2024年02月10日
    浏览(42)
  • 架构中保障交付关键动作之降低不确定性

    不确定性的来源有多个方面。 首先是目标的不确定性 。这主要是赞助方对目标的不确定而导致的。 第二是资源的不确定性 。这是互联网时代架构师所面临的最大挑战。无论是国内还是国外的互联网企业,往往通过类似于虚拟机超卖的方案去刺激团队的产出。 企业往往会同

    2024年02月02日
    浏览(54)
  • 贝叶斯神经网络 - 捕捉现实世界的不确定性

    贝叶斯神经网络 - 捕捉现实世界的不确定性 Bayesian Neural Networks 生活本质上是不确定性和概率性的,贝叶斯神经网络 (BNN) 旨在捕获和量化这种不确定性 在许多现实世界的应用中,仅仅做出预测是不够的;您还想知道您对该预测的信心有多大。例如,在医疗保健领域,如果模型

    2024年02月10日
    浏览(36)
  • 动态不确定性的动态S过程(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来

    2024年02月11日
    浏览(52)
  • 【经济研究】论文《经济ZC不确定性与创新》数据复现

    数据简介 :当前宏观经济面临较大下行压力,需要“稳中求进”兼顾经济高质量发展与经济增速等多种目标,这就不可避免地导致各种经济ZC的频繁调整,产生不确定性风险。在此背景下,经济政策不确定性上升如何影响企业决策,进而是否会阻碍中国创新驱动发展战略有效

    2024年02月10日
    浏览(53)
  • 一种融合偶然和认知不确定性的贝叶斯深度学习RUL框架

    _ 原文: _ 《《A Bayesian Deep Learning RUL Framework Integrating Epistemic and Aleatoric Uncertainties》 _ 作者 __ : _ Gaoyang Lia,Li Yangb,Chi-Guhn Leec,Xiaohua Wangd,Mingzhe Ronge _ 作者单位: _ _a. School of Electrical Engineering, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University _ b. B

    2024年02月08日
    浏览(52)
  • 【人工智能的数学基础】深度学习中的不确定性(Uncertainty)

    使用贝叶斯深度学习建模深度学习中的不确定性. paper:What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 现有的深度学习方法大多只能给出特定的预测结果,而不能给出结果的不确定性程度。 深度学习中输出结果的不确定性主要有两种: 偶然不确定性 是由数据中的

    2024年02月07日
    浏览(58)
  • 人工智能_不确定性推理(5,证据理论 6,模糊推理方法 7,模糊控制)

    4.5 证据理论 证据理论(theory of evidence):又称D一S理论,是德普斯特(APDempster)首先提出,沙佛(GShafer)进一步发展起来的一种处理不确定性的理论 D-S证据推理针对的是6分不清”或“不知道”这样的不确定性; 1981年巴纳特(JABarnett)把该理论引入专家系统中,同年卡威(JGarvey)等人用它

    2024年02月03日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包