引言:如何判定两个矩阵相似
相似矩阵,本质上是同一个线性变换在不同坐标系下的矩阵
因此,两个矩阵相似的一大特点是:特征值相同,各特征值的几何重数/代数重数相同
进而,我们可以用特征多项式、特征值、行列式、迹、秩 等相似不变量来迅速辅助判定两个矩阵是否相似,但这些都不是充要条件
两个矩阵相似的充要条件:两个矩阵具有相同的Jordan标准型(包含了大量信息,如特征值、代数/几何重数、特征向量和可对角化判定的信息,下面会说明)
- Jordan标准型是一整个“相似矩阵大家族”的典型代表,根据相似关系的传递性,上述结论显然
Jordan标准型
Jordan标准型可以视为一种“矩阵三角化”。(ps. 也可以理解为一种由Jordan块构成的主对角分块矩阵)
对于n阶方阵 A \mathbf A A,一定存在正交矩阵/酉矩阵 Q \mathbf Q Q使 A \mathbf A A相似于上三角阵: A = Q U Q T \mathbf A=\mathbf Q\mathbf U\mathbf Q^T A=QUQT,详见矩阵三角化的 Schur 定理
如果将正交矩阵改为普通的可逆矩阵 P \mathbf P P,同样可以得到上三角阵 J \mathbf J J,即Jordan标准型: A = P J P − 1 \mathbf A=\mathbf P\mathbf J\mathbf P^{-1} A=PJP−1
为何要三角化?Jordan标准型是由于无法相似对角化而提出的,而上三角阵就是最接近对角矩阵的“最佳形式”
Jordan标准型的一般形式
任何方阵 A \mathbf A A都相似于一个Jordan标准型: A = P J P − 1 \mathbf A=\mathbf P\mathbf J\mathbf P^{-1} A=PJP−1
Jordan标准型
J
\mathbf J
J由多个Jordan块组成
J
=
[
J
m
1
(
λ
1
)
0
⋯
0
0
J
m
2
(
λ
2
)
⋯
0
⋮
⋮
⋱
⋱
0
0
⋯
J
m
k
(
λ
k
)
]
,其中
J
m
i
(
λ
i
)
=
[
λ
i
1
⋱
⋱
⋱
1
λ
i
]
m
i
×
m
i
\mathbf J=\left[\begin{array}{cccc} J_{m_1}\left(\lambda_{1}\right) & 0 & \cdots & 0 \\ 0 & J_{m_2}\left(\lambda_{2}\right) & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots \\ 0 & 0 & \cdots & J_{m_k}\left(\lambda_{k}\right) \end{array}\right],其中J_{m_i}\left(\lambda_{i}\right)=\left[\begin{array}{cccc} \lambda_{i} & 1 & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i} \end{array}\right]_{m_i\times m_i}
J=
Jm1(λ1)0⋮00Jm2(λ2)⋮0⋯⋯⋱⋯00⋱Jmk(λk)
,其中Jmi(λi)=
λi1⋱⋱⋱1λi
mi×mi
一般默认的排列顺序为
λ
1
≥
λ
2
≥
.
.
.
≥
λ
k
\lambda_1\geq\lambda_2\geq...\geq\lambda_k
λ1≥λ2≥...≥λk
每个Jordan块 J ( λ i ) J\left(\lambda_{i}\right) J(λi)的对角线上为特征值 λ i \lambda_{i} λi,对角线上方全为1
Jordan标准型中隐含的信息
-
特征值: J \mathbf J J的所有主对角元 λ 1 , . . . , λ k \lambda_1,...,\lambda_k λ1,...,λk
-
特征值 λ i \lambda_i λi的代数重数 β i \beta_i βi: J \mathbf J J的对角线上 λ i \lambda_i λi的出现次数(特征值 λ i \lambda_i λi的重根数)
ps. 代数重数满足 β i + β 2 + . . . + β k = n \beta_i+\beta_2+...+\beta_k=n βi+β2+...+βk=n -
特征值 λ i \lambda_i λi的几何重数 n i n_i ni:主对角元为 λ i \lambda_i λi的Jordan块个数
(一个Jordan块对应一个独立的特征向量/一个几何重数)矩阵可对角化,那么其所有特征值的几何重数=代数重数,也就是说其Jordan标准型中所有的Jordan块都必须为1阶的
或者说,可对角化矩阵,其Jordan标准型就是一个对角矩阵
-
某个Jordan块的特征向量(不是原矩阵 A \mathbf A A的特征向量):
每个Jordan块可以被写为 J m ( λ ) = [ λ 1 ⋱ ⋱ ⋱ 1 λ ] = [ λ ⋱ ⋱ λ ] + [ 0 1 ⋱ ⋱ ⋱ 1 0 ] = λ I m + J m ( 0 ) \begin{aligned}J_{m}(\lambda)&=\left[\begin{array}{cccc}\lambda & 1 & & \\& \ddots & \ddots & \\& & \ddots & 1 \\& & & \lambda\end{array}\right] \\ &=\left[\begin{array}{llll}\lambda & & & \\& \ddots & & \\& & \ddots & \\& & & \lambda\end{array}\right] +\left[\begin{array}{llll}0 & 1 & & \\& \ddots & \ddots & \\& & \ddots & 1 \\& & & 0\end{array}\right] \\ &=\lambda I_{m}+J_{m}(0)\end{aligned} Jm(λ)= λ1⋱⋱⋱1λ = λ⋱⋱λ + 01⋱⋱⋱10 =λIm+Jm(0)这是一个单位阵和一个幂零(nilpotent)矩阵
①单位阵的特征值为 λ \lambda λ,特征向量为任意向量( λ I m x = λ x \lambda\bold I_{m}\bold x=\lambda\bold x λImx=λx)
②幂零矩阵 J m ( 0 ) J_{m}(0) Jm(0)的特征值为0,且相应的特征子空间维数为 m − r a n k = 1 m-rank=1 m−rank=1,唯一的(单位长度)特征向量为 e 1 \bold e_1 e1( J m ( 0 ) e 1 = 0 J_{m}(0)\bold e_1=\bold 0 Jm(0)e1=0),而对于其他标准单位向量则有 J m ( 0 ) e i = e i − 1 , i > 1 J_{m}(0)\bold e_i=\bold e_{i-1},i>1 Jm(0)ei=ei−1,i>1
由②,Jordan块的特征向量必然是标准单位向量(例如 e i \bold e_i ei代表单位阵 E \bold E E的第 i i i列)
综合①②可知,该Jordan块的特征向量为 J m ( λ ) e 1 = λ e 1 J m ( λ ) e i = λ e i + e i − 1 , i = 2 , … , m J_{m}(\lambda) \mathbf{e}_{1}=\lambda \mathbf{e}_{1} \\ J_{m}(\lambda) \mathbf{e}_{i}=\lambda \mathbf{e}_{i}+\mathbf{e}_{i-1}, \quad i=2, \ldots, m Jm(λ)e1=λe1Jm(λ)ei=λei+ei−1,i=2,…,m
可以看出,每个 m m m阶的Jordan块 J m ( 0 ) J_{m}(0) Jm(0)有且仅有一个特征向量 e 1 \mathbf{e}_{1} e1(因此上面说“一个Jordan块对应一个几何重数”),而其余的 m − 1 m-1 m−1个标准单位向量 e 2 , e 3 , . . . , e m \mathbf{e}_{2},\mathbf{e}_{3},...,\mathbf{e}_{m} e2,e3,...,em称为广义特征向量(generalized eigenvector)
(可对角化的矩阵,其无关特征向量可张成整个空间,而Jordan标准型的情况,其所有广义特征向量张成整个空间),详见Jordan 形式大解读 (上) | 线代启示录
- 举例说明:
例如
J A = b l k d i a g ( [ 2 1 0 0 0 2 1 0 0 0 2 0 0 0 0 2 ] , [ 3 1 0 3 ] ) = b l k d i a g ( [ 2 1 0 0 2 1 0 0 2 ] , [ 2 ] , [ 3 1 0 3 ] ) = b l k d i a g ( J 3 ( 2 ) , J 2 ( 2 ) , J 2 ( 3 ) ) 和 J B = b l k d i a g ( [ 2 1 0 0 0 2 0 0 0 0 2 1 0 0 0 2 ] , [ 3 1 0 3 ] ) = b l k d i a g ( [ 2 1 0 2 ] , [ 2 1 0 2 ] , [ 3 1 0 3 ] ) = b l k d i a g ( J 2 ( 2 ) , J 2 ( 2 ) , J 2 ( 3 ) ) \begin{aligned}\mathbf J_{A} &=blkdiag(\left[\begin{array}{lll|l} 2 & 1 & 0 & 0 \\0 & 2 & 1 & 0 \\0 & 0 & 2 & 0 \\\hline 0 & 0 & 0 & 2\end{array}\right],\left[\begin{array}{ll}3 & 1 \\0 & 3\end{array}\right])\\ &=blkdiag(\left[\begin{array}{lll}2 & 1 & 0 \\0 & 2 & 1 \\0 & 0 & 2\end{array}\right], [2], \left[\begin{array}{ll}3 & 1 \\0 & 3\end{array}\right])\\ &=blkdiag(J_3(2),J_2(2),J_2(3))\end{aligned}和\begin{aligned}\mathbf J_{B}&=blkdiag(\left[\begin{array}{ll|ll} 2 & 1 & 0 & 0 \\0 & 2 & 0 & 0 \\\hline 0 & 0 & 2 & 1 \\0 & 0 & 0 & 2\end{array}\right] ,\left[\begin{array}{ll}3 & 1 \\0 & 3\end{array}\right]) \\ &=blkdiag(\left[\begin{array}{ll}2 & 1 \\0 & 2\end{array}\right], \left[\begin{array}{ll}2 & 1 \\0 & 2\end{array}\right], \left[\begin{array}{ll}3 & 1 \\0 & 3\end{array}\right])\\ &=blkdiag(J_2(2),J_2(2),J_2(3))\end{aligned} JA=blkdiag( 2000120001200002 ,[3013])=blkdiag( 200120012 ,[2],[3013])=blkdiag(J3(2),J2(2),J2(3))和JB=blkdiag( 2000120000200012 ,[3013])=blkdiag([2012],[2012],[3013])=blkdiag(J2(2),J2(2),J2(3))
其中, J A \mathbf J_{A} JA的特征值为 2 , 3 2,3 2,3:
特征值 2 2 2的代数重数为 4 4 4,几何重数为 2 2 2
特征值 3 3 3的代数重数为 2 2 2,几何重数为 1 1 1
J A \mathbf J_{A} JA的特征值 2 2 2的两个特征向量为 [ 2 1 0 0 2 1 0 0 2 ] → e 1 = ( 1 , 0 , 0 , 0 , 0 , 0 ) T [ 2 ] → e 4 = ( 0 , 0 , 0 , 1 , 0 , 0 ) T \begin{aligned}{\left[\begin{array}{lll}2 & 1 & 0 \\0 & 2 & 1 \\0 & 0 & 2\end{array}\right]\rightarrow \mathbf{e}_{1}=(1,0,0,0,0,0)^{T}} \\ {[2] \rightarrow \mathbf{e}_{4}=(0,0,0,1,0,0)^{T}}\end{aligned} 200120012 →e1=(1,0,0,0,0,0)T[2]→e4=(0,0,0,1,0,0)T;
J A \mathbf J_{A} JA的特征值 3 3 3的特征向量为 [ 3 1 0 3 ] → e 5 = ( 0 , 0 , 0 , 0 , 1 , 0 ) T {\left[\begin{array}{ll}3 & 1 \\0 & 3\end{array}\right] \rightarrow \mathbf{e}_{5}=(0,0,0,0,1,0)^{T}} [3013]→e5=(0,0,0,0,1,0)T
J B \mathbf J_{B} JB的特征值为 2 , 3 2,3 2,3:
特征值 2 2 2的代数重数为 4 4 4,几何重数为 2 2 2
特征值 3 3 3的代数重数为 2 2 2,几何重数为 1 1 1
J B \mathbf J_{B} JB的特征值 2 2 2的两个特征向量为 [ 2 1 0 2 ] → e 1 = ( 1 , 0 , 0 , 0 , 0 , 0 ) T [ 2 1 0 2 ] → e 3 = ( 0 , 0 , 1 , 0 , 0 , 0 ) T \begin{aligned}{\left[\begin{array}{ll}2 & 1 \\0 & 2\end{array}\right] \rightarrow \mathbf{e}_{1}=(1,0,0,0,0,0)^{T}} \\ {\left[\begin{array}{ll}2 & 1 \\0 & 2\end{array}\right] \rightarrow \mathbf{e}_{3}=(0,0,1,0,0,0)^{T}}\end{aligned} [2012]→e1=(1,0,0,0,0,0)T[2012]→e3=(0,0,1,0,0,0)T;
J B \mathbf J_{B} JB的特征值 3 3 3的特征向量为 [ 3 1 0 3 ] → e 5 = ( 0 , 0 , 0 , 0 , 1 , 0 ) T {\left[\begin{array}{ll}3 & 1 \\0 & 3\end{array}\right] \rightarrow \mathbf{e}_{5}=(0,0,0,0,1,0)^{T}} [3013]→e5=(0,0,0,0,1,0)T
Jordan标准型的计算方式
见Jordan 形式大解读 (下)
Jordan标准型的应用
Jordan标准型在数值计算上的用处不大,但是可用于分析矩阵特征值情况,另外,证明两个矩阵相似的通用方法就是证明它们有相同的Jordan标准型文章来源:https://www.toymoban.com/news/detail-445638.html
Reference:
Jordan 典型形式浅说 (上)
Jordan 典型形式浅说 (下)
Jordan 形式大解读 (上)
Jordan 形式大解读 (下)文章来源地址https://www.toymoban.com/news/detail-445638.html
到了这里,关于矩阵理论| 基础:Jordan标准型(从Jordan标准型求代数重数/几何重数/特征向量)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!