【论文阅读】A Comparative Study on Camera-Radar Calibration Methods

这篇具有很好参考价值的文章主要介绍了【论文阅读】A Comparative Study on Camera-Radar Calibration Methods。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

A Comparative Study on Camera-Radar Calibration Methods

综述文

Abstract

compare three types of the calibration methods presented in previous studies on fusing camera and radar in terms of calibration accuracy.
Experimental results show that one type of the methods is not appropriated to the camera-radar calibration, and the methods belonging to the other types provide quite similar accuracy.

I. INTRODUCTION

ADAS:advanced driver assistance systems

The camera-radar calibration presented in the literature can be divided into three categories.

  1. first category based on affine transformation, obtained by the least squares using pseudo inverse.
  2. second category based on projective transformation. the transformation can be regard as a two dimensional homography from radar plane to image plane, and it is obtained using the least squares using singular value decomposition.
  3. third category based on the transformation that maps a point in a three dimensional
    space to a point on image plane of camera. Those methods are similar to the extrinsic calibration for camera pose estimation.

II. CALIBRATION METHODS

  1. Pseudo inverse (PI)
    six unknown variables
    an optimization problem can be formulated to minimize the projection error on the image plane as follows.

  2. Direct linear transformation (DLT)
    corresponds to the two dimensional homography estimation between radar plane and image plane.
    the solution computed by DLT depends on the coordinate system, and a normalization, which is called as the pre-conditioning, is recommended to be conducted together with DLT.

transformation H can be more refined by additionally performing a nonlinear optimization method such as Levenberg-Marquardt (LM) algorithm [15] using H as its initial point.
One of the popular objective functions used in the nonlinear optimization is the symmetric transfer error as follows.

  1. Extrinsic calibration (EC)
    different from previous 2 methods. similar as camera and lidar calibration.
    In the literature, the extrinsic calibration is performed by solving a nonlinear optimization problem with the following objective function:formula here
    The LM algorithm is one of the popular algorithms to solve this optimization problem when N ≥ 6.

III. EXPERIMENTS

a radar sensor (Continental ARS408-21) and a camera sensor(FLIR Chameleon3 with the lens of Theia SL183M)
sensors are installed behind the frontal grill and behind the windshield of our automotive platform (Hyundai IONIQ Electric)
resolution of the image was fixed to 1280 × 720 pixels.

Since the absolute sizes of the corner reflectors are not large enough, they are invisible if they are placed at a distance from the camera.

not easy to manually decide the image coordinates of the corner reflectors with the distances above
about 40 meters.

twelve sets were divided into training data and test data:

calibration error for given N pairs of {p i } and {q i }

In summary, PI was not suitable for the camera-radar calibration, and the differences of the other calibration meth-
ods were insignificant quantitatively and qualitatively. In a situation that the calibration speed is critical together with
its accuracy, NDLT may be a better choice than the other methods because DLT is based on the optimization problem
having a closed form solution whereas LM is an iterative algorithm. Lastly, the accurate calibration can be obtained
from about 20 radar-image data pairs.

IV. CONCLUSION

  1. described the camera-radar calibration methods;
  2. compared them in terms of the calibration error.

PI was not appropriate to the camera-radar calibration and DLT based methods provided slightly better than EC in most cases we considered.
Also, the pre-conditioning normalization is slightly more effective than the nonlinear refinement under
the assumption that target objects have almost same height.

Words

Nonetheless 尽管如此
resolution 决议
water drop 水滴
affine 仿射
pseudo 伪,冒充的
arbitrary 随意的
pre-conditioning 预处理
isotropic |ˌīsəˈträpik| 各向同性
symmetric |səˈmetrik| 对称的
grill 烤架
windshield 挡风玻璃
reflectors 反射器文章来源地址https://www.toymoban.com/news/detail-446441.html

到了这里,关于【论文阅读】A Comparative Study on Camera-Radar Calibration Methods的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 毫米波雷达成像论文阅读笔记: IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar

    原始笔记链接:https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==mid=2247486680idx=1sn=edf41d4f95395d7294bc958ea68d3a68chksm=cf51be21f826373790bc6d79bcea6eb2cb3d09bb1860bba0af0fd5e60c448ca006976503e460#rd ↑ uparrow ↑ 点击上述链接即可阅读全文 毫米波雷达成像论文阅读笔记: IEEE TPAMI 2023 | CoIR: Compressive Implicit Radar Ab

    2024年02月12日
    浏览(35)
  • [论文阅读]4DRadarSLAM: A 4D Imaging Radar SLAM System for Large-scale Environments

      目录   1.摘要和引言: 2. 系统框架: 2.1 前端: 2.2 回环检测: 2.3 后端: 3.实验和分析: 4.结论 1.摘要和引言: 这篇论文介绍了一种名为“4DRadarSLAM”的新型4D成像雷达SLAM系统,旨在提高大规模环境下的定位与地图构建性能。与传统的基于激光雷达的SLAM系统相比,该系统

    2024年01月23日
    浏览(60)
  • 【目标检测论文阅读笔记】RTMDet: An Empirical Study of Designing Real-Time Object Detectors(2022)

            在本文中,我们的目标是 设计一种高效的实时物体检测器,它超越了 YOLO 系列,并且可以轻松扩展到许多物体识别任务 ,例如实例分割和旋转物体检测。为了获得更高效的模型架构,我们探索了一种  在主干和颈部具有兼容能力的架构 ,该架构  由一个 由 大核

    2024年02月07日
    浏览(64)
  • 领域最全!多传感器融合方法综述!(Camera/Lidar/Radar等多源异构数据)

    点击下方 卡片 ,关注“ 自动驾驶之心 ”公众号 ADAS巨卷干货,即可获取 点击进入→ 自动驾驶之心技术交流群 后台回复【ECCV2022】获取ECCV2022所有自动驾驶方向论文! 原文:Multi-Sensor Fusion in Automated Driving: A Survey 自动驾驶正成为影响未来行业的关键技术,传感器是自动驾驶

    2023年04月08日
    浏览(45)
  • GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose 论文阅读

    题目 :GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose 作者 :Zhichao Yin and Jianping Shi 来源 :CVPR 时间 :2018 我们提出了 GeoNet,这是一种联合无监督学习框架,用于视频中的单目深度、光流和自我运动估计。 这三个组件通过 3D 场景几何的性质耦合在一起,由我们的框

    2024年02月09日
    浏览(46)
  • 【论文阅读】以及部署BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

    BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework BEVFusion:一个简单而强大的LiDAR-相机融合框架 NeurIPS 2022 多模态传感器融合意味着信息互补、稳定,是自动驾驶感知的重要一环,本文注重工业落地,实际应用 融合方案: 前融合(数据级融合)指通过空间对齐直接融合不同模态的

    2024年02月04日
    浏览(49)
  • On Evaluation of Embodied Navigation Agents 论文阅读

    题目 :On Evaluation of Embodied Navigation Agents 作者 :Peter Anderson,Angel Chang 来源 :arXiv 时间 :2018 过去两年,导航方面的创造性工作激增。这种创造性的输出产生了大量有时不兼容的任务定义和评估协议。为了协调该领域正在进行和未来的研究,我们召集了一个工作组来研究导航

    2024年02月14日
    浏览(51)
  • 【论文阅读】Feature Inference Attack on Shapley Values

    研究背景 近年来,解释性机器学习逐渐成为一个热门的研究领域。解释性机器学习可以帮助我们理解机器学习模型是如何进行预测的,它可以提高模型的可信度和可解释性。Shapley值是一种解释机器学习模型预测结果的方法,它可以计算每个特征对预测结果的贡献程度,从而

    2024年02月15日
    浏览(44)
  • On the Spectral Bias of Neural Networks论文阅读

    众所周知,过度参数化的深度神经网络(DNNs)是一种表达能力极强的函数,它甚至可以以100%的训练精度记忆随机数据。这就提出了一个问题,为什么他们不能轻易地对真实数据进行拟合呢。为了回答这个问题,研究人员使用傅里叶分析来研究深层网络。他们证明了具有有限权值

    2024年02月22日
    浏览(51)
  • 【论文阅读】An Overview of Reachability Indexes on Graphs

    Chao Zhang, Angela Bonifati, and M. Tamer Özsu. 2023. An Overview of Reachability Indexes on Graphs. In Companion of the 2023 International Conference on Management of Data (SIGMOD \\\'23). Association for Computing Machinery, New York, NY, USA, 61–68. https://doi.org/10.1145/3555041.3589408 图一直是建模实体和它们之间的关系的自然选择。最

    2024年02月03日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包