由于历史原因,没有整理好完整的代码,所以在【多目标优化NSGA-II的实现和测试(MATLAB实现)】中只放了部分代码。
现在已经整理好了代码,此部分的代码测试内容为:ZDT1、ZDT2、ZDT3、ZDT4、ZDT6。
目录
主要内容
代码模块
其他内容
运行注意事项
代码
nsga2_test
nsga2_main
get_variable_bounds
init_pop
sort_pop
select_parent
myga
combined_pop
select_pop
calculate_gd
calculate_sp
calculate_pop
plotPareto
运行结果
主要内容
代码模块
- nsga2_test:测试函数,用于保存测试数据
- nsga2_main:主函数,,用于运行NSGA2算法的框架
- get_variable_bounds:获取种群范围
- init_pop:种群初始化
- sort_pop:种群排序
- select_parent:选择父代
- myga:进行遗传算法,杂交变异
- combined_pop:子代和原始种群进行合并
- select_pop:选择新一代种群
- calculate_gd:计算GD
- calculate_sp:计算SP
- calculate_pop:计算种群
其他内容
plotPareto:画出已知前言数据,用于跟测试得到的前言的可视化对比
如果需要获取已知的ZDT1、ZDT2、ZDT3、ZDT4、ZDT6的前言数据,通过以下链接获取:
ZDT前沿数据.zip-互联网文档类资源-CSDN文库https://download.csdn.net/download/weixin_44034444/73514580
运行注意事项
- 在nsga2_test中设置pop_size,iterations。以及测试次数test。nsga2_test可以保存每一个测试函数,每一测试中每一代的种群数据以及GD和SP的数据。主要是为了方便用获取得到的数据进行分析。
- 如果只是需要查看nsga2的效果,运行nsga2_main函数,注意pop_size,iterations的设置。
代码
nsga2_test
clc
clear
% 定义全局变量,
global pop_size;
global iterations;
pop_size = 100;%种群大小
iterations = 500;%迭代次数
test = 1; %测试次数
for x = 1:5%选择需要计算的函数
switch x
case 1
[~,dim] = get_variable_bounds(x);
%dim = 10;
%设置保存参数
testGD = zeros(test,iterations);
testSP = zeros(test,iterations);
testPop = zeros(test,iterations,pop_size,dim+4);
NSGA2_zdt1 = [];
disp('正在测试zdt1')
for i = 1:test
disp(['第' num2str(i) '次测试']);
[pop,GD,SP] = nsga2_main(x);
testGD(i,:) = GD;
testSP(i,:) = SP;
testPop(i,:,:,:) = pop;
end
NSGA2_zdt1.testGD = testGD;
NSGA2_zdt1.testSP = testSP;
NSGA2_zdt1.testPop = testPop;
save('NSGA2_zdt1.mat','NSGA2_zdt1')
case 2
[~,dim] = get_variable_bounds(x);
%dim = 10;
%设置保存参数
testGD = zeros(test,iterations);
testSP = zeros(test,iterations);
testPop = zeros(test,iterations,pop_size,dim+4);
NSGA2_zdt2 = [];
disp('正在测试zdt2')
for i = 1:test
disp(['第' num2str(i) '次测试']);
[pop,GD,SP] = nsga2_main(x);
testGD(i,:) = GD;
testSP(i,:) = SP;
testPop(i,:,:,:) = pop;
end
NSGA2_zdt2.testGD = testGD;
NSGA2_zdt2.testSP = testSP;
NSGA2_zdt2.testPop = testPop;
save('NSGA2_zdt2.mat','NSGA2_zdt2')
case 3
[~,dim] = get_variable_bounds(x);
%dim = 10;
%设置保存参数
testGD = zeros(test,iterations);
testSP = zeros(test,iterations);
testPop = zeros(test,iterations,pop_size,dim+4);
NSGA2_zdt3 = [];
disp('正在测试zdt3')
for i = 1:test
disp(['第' num2str(i) '次测试']);
[pop,GD,SP] = nsga2_main(x);
testGD(i,:) = GD;
testSP(i,:) = SP;
testPop(i,:,:,:) = pop;
end
NSGA2_zdt3.testGD = testGD;
NSGA2_zdt3.testSP = testSP;
NSGA2_zdt3.testPop = testPop;
save('NSGA2_zdt3.mat','NSGA2_zdt3')
case 4
[~,dim] = get_variable_bounds(x);
%dim = 10;
%设置保存参数
testGD = zeros(test,iterations);
testSP = zeros(test,iterations);
testPop = zeros(test,iterations,pop_size,dim+4);
NSGA2_zdt4 = [];
disp('正在测试zdt4')
for i = 1:test
disp(['第' num2str(i) '次测试']);
[pop,GD,SP] = nsga2_main(x);
testGD(i,:) = GD;
testSP(i,:) = SP;
testPop(i,:,:,:) = pop;
end
NSGA2_zdt4.testGD = testGD;
NSGA2_zdt4.testSP = testSP;
NSGA2_zdt4.testPop = testPop;
save('NSGA2_zdt4.mat','NSGA2_zdt4')
case 5
[~,dim] = get_variable_bounds(x);
%dim = 10;
%设置保存参数
testGD = zeros(test,iterations);
testSP = zeros(test,iterations);
testPop = zeros(test,iterations,pop_size,dim+4);
NSGA2_zdt6 = [];
disp('正在测试zdt6')
for i = 1:test
disp(['第' num2str(i) '次测试']);
[pop,GD,SP] = nsga2_main(x);
testGD(i,:) = GD;
testSP(i,:) = SP;
testPop(i,:,:,:) = pop;
end
NSGA2_zdt6.testGD = testGD;
NSGA2_zdt6.testSP = testSP;
NSGA2_zdt6.testPop = testPop;
save('NSGA2_zdt6.mat','NSGA2_zdt6')
end
end
nsga2_main
function [allpop,GD,SP] = nsga2_main(x)
% 测试主函数 x,问题编号
% 输出种群,GD和SP
% 参数设置
global pop_size
global iterations;%迭代次数
target = 2;
% 获取种群范围
[bounds,dimension] = get_variable_bounds(x);
%种群初始化
pop = init_pop(pop_size,dimension,bounds,x);
%种群排序
pop = sort_pop(pop,target,dimension);
%锦标赛参数设置
parent_size = pop_size/2;
select_size = 2;
% 初始化函数返回数据。
% nsga2_test.m 中需要保存的数据。 如果不跑nsga2_test.m。
GD = zeros(1,iterations);
SP = zeros(1,iterations);
allpop = zeros(iterations,pop_size,dimension+4);%保存进化过程中种群的数据
warning off all
%迭代循环
for i = 1:iterations
%选择父代
parent_pop = select_parent(pop,parent_size,select_size);
%进行遗传算法,杂交变异
child_pop = myga(parent_pop,dimension,bounds,x);
%子代和原始种群进行合并
pop = combined_pop(pop,child_pop,target,dimension);
%对合并种群进行非支配排序
pop = sort_pop(pop,target,dimension);
%选择新一代种群
pop = select_pop(pop,target,dimension,pop_size);
% %画出种群迭代的过程。只运行naga2_main的的时候,可以画出单个测试函数的变化
% plot(pop(:,dimension+1),pop(:,dimension+2),'*')
% grid on
% title(['NSGA2测试第',num2str(x),'个函数第 ',num2str(i),' 代结果'])
% pause(0.1)
%保存数据,计算每一代的GD和SP,也可以通过保存allpop后单独计算
allpop(i,:,:) = pop;
GD(1,i) = calculate_gd(pop,x);
SP(1,i) = calculate_sp(pop);
end
end
get_variable_bounds
function [bounds,dimension] = get_variable_bounds(x)
switch x
case 1
dimension = 30;
bounds = [ones(dimension,1)*0,ones(dimension,1)*1];
case 2
dimension = 30;
bounds = [ones(dimension,1)*0,ones(dimension,1)*1];
case 3
dimension = 30;
bounds = [ones(dimension,1)*0,ones(dimension,1)*1];
case 4
dimension = 10;
bounds = [zeros(1,1),ones(1,1);ones(9,1).*-5,ones(9,1).*5];
case 5
dimension = 10;
bounds = [ones(dimension,1)*0,ones(dimension,1)*1];
end
init_pop
function pop = init_pop(pop_size,dimension,bounds,x)
p = rand(pop_size,dimension);%生成popsize*dimension的0-1矩阵
%生成定义域范围内种群
for i = 1:dimension
p(:,i) = bounds(i,1)+p(:,i)*(bounds(i,2)-bounds(i,1));
end
%计算种群的适应值
evaluate = calculate_pop(p,x);
pop = [p,evaluate];
sort_pop
function pop = sort_pop(pop_eva,target,dimension)
[N, ~] = size(pop_eva);
front = 1;
F(front).f = [];
individual = [];
%先确定等级为1的个体以及被支配的集合
for i = 1:N
individual(i).n = 0; %支配i的个体个数
individual(i).p = [];%被个体i支配的个体集合
for j = 1:N
less = 0; %判断i是否可以支配j
equal = 0; %判断i是否等于j,序号相同时相等
more = 0; %判断i是否被j支配
for k = 1:target %在每一个目标函数中判断支配关系
if pop_eva(i,dimension+k) < pop_eva(j,dimension+k)
less = less+1;
elseif pop_eva(i,dimension+k) == pop_eva(j,dimension+k)
equal = equal+1;
else
more = more + 1;
end
end
if less == 0 && equal ~= target
individual(i).n = individual(i).n + 1;
elseif more == 0 && equal ~= target
individual(i).p = [individual(i).p j];
end
end
if individual(i).n == 0
pop_eva(i,target+dimension+1) = 1;
F(front).f = [F(front).f i];
end
end
%对对所有种群所有个体进行等级划分
while ~isempty(F(front).f)
Q = [];
for i = 1:length(F(front).f) %等级为1的长度
if ~isempty(individual(F(front).f(i)).p) %等级为1的个体中查找其所支配的个体
for j = 1:length((individual(F(front).f(i)).p))%当前个体等级为1的个体所支配的个体数量
individual(individual(F(front).f(i)).p(j)).n = ...
individual(individual(F(front).f(i)).p(j)).n - 1;
if individual(individual(F(front).f(i)).p(j)).n == 0
pop_eva(individual(F(front).f(i)).p(j),target + dimension + 1) = front + 1;
Q = [Q individual(F(front).f(i)).p(j)]; %记录下一等级的集合
end
end
end
end
front = front + 1;
F(front).f = Q;
end
%排序
[~, index_front] = sort(pop_eva(:,target + dimension +1));%根据等级对个体进行排序
sort_front = zeros(size(pop_eva));
for i = 1 : length(index_front)
sort_front(i,:) = pop_eva(index_front(i),:); %排序后的结果
end
current_index = 0; %当前下标。
%计算拥挤距离
for front = 1 : (length(F)-1)
distance = 0;
y =[];
previous_index = current_index + 1;
for i = 1 : length(F(front).f)
y(i,:) = sort_front(current_index + i,:);
end
current_index = current_index + i;
sorted_based_on_objective = [];
%函数值排序
for i = 1 : target
%函数值排序
[sorted_based_on_objective, index_of_objectives] = sort(y(:,dimension + i));
sorted_based_on_objective = [];
for j = 1 : length(index_of_objectives)
sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
end
f_max = ...
sorted_based_on_objective(length(index_of_objectives), dimension + i);
f_min = sorted_based_on_objective(1, dimension + i);
y(index_of_objectives(length(index_of_objectives)),target + dimension + 1 + i)...
= Inf;
y(index_of_objectives(1),target + dimension + 1 + i) = Inf;
for j = 2 : length(index_of_objectives) - 1
next_obj = sorted_based_on_objective(j + 1,dimension + i);
previous_obj = sorted_based_on_objective(j - 1,dimension + i);
if (f_max - f_min == 0)
y(index_of_objectives(j),target + dimension + 1 + i) = Inf;
else
y(index_of_objectives(j),target + dimension + 1 + i) = ...
(next_obj - previous_obj)/(f_max - f_min);
end
end
end
distance = [];
distance(:,1) = zeros(length(F(front).f),1);
for i = 1 : target
distance(:,1) = distance(:,1) + y(:,target + dimension + 1 + i);
end
y(:,target + dimension + 2) = distance;
y = y(:,1 : target + dimension + 2);
z(previous_index:current_index,:) = y;
end
pop = z();
select_parent
function parent_pop = select_parent(pop,parent_size,compare_size)
%父代个体的选择
[pop_size,distance] = size(pop);
rank = distance-1; %记录等级所在的列
select_pop = zeros(compare_size,distance);
for i = 1:parent_size
%生成参与锦标赛的个体序列
parent_list = randperm(pop_size,compare_size);
%参与锦标赛的个体集合
for j = 1:compare_size
select_pop(j,:) = pop(parent_list(j),:);
end
[min_rank,min_rank_index] = min(select_pop(:,rank));
if length(min_rank)==1
parent_pop(i,:) = select_pop(min_rank_index,:);
else
%最小等级相同的个体集合
for k = 1:length(min_rank)
select_pop1(k,:) = select_pop(min_rank_index(k),:);
end
[~,max_distance_index] = max(select_pop1(:,distance));
parent_pop(i,:) = select_pop1(max_distance_index(1),:);
end
end
myga
function child_pop = myga(parent_pop,dimension,bounds,x)
%GA算法
parent_pop = sortrows(parent_pop,[2+dimension+1,-(2+dimension+2)]);
parent_pop = parent_pop(:,1:dimension);
[popsize,~] = size(parent_pop);
%定义交叉变异的概率
crossover = 1;
mutation = 1;
nc=20;
child = [];
for i = 1:popsize
c_r = rand(1);
m_r = rand(1);
%交叉变换
if c_r < crossover
%随机选择一个个体与该个体进行杂交
p1 = randperm(popsize,1);
parent1 = parent_pop(p1,:);
parent2 = parent_pop(i,:);
% 多项式杂交
child1 = zeros(1,dimension);
child2 = zeros(1,dimension);
for j = 1:dimension
r = rand(1);
if r <= 0.5
a = (2*r)^(1/(nc+1));
else
a= (2*(1-r))^(-(1/(nc+1)));
end
child1(j) = ((1+a)*parent1(j) + (1-a)*parent2(j))/2;
child2(j) = ((1-a)*parent1(j) + (1+a)*parent2(j))/2;
if child1(j) > bounds(j,2)
child1(j) = bounds(j,2);
elseif child1(j) < bounds(j,1)
child1(j) = bounds(j,1);
end
if child2(j) > bounds(j,2)
child2(j) = bounds(j,2);
elseif child2(j) < bounds(j,1)
child2(j) = bounds(j,1);
end
end
child = [child;child1;child2];
end
if m_r < mutation
child3=parent_pop(i,:);
for k = 1:dimension
r = rand();
if r<0.5
m = (2*r)^(1/21)-1;
else
m = 1 - (2*(1 - r))^(1/(21));
end
child3(1,k) = child3(1,k)+m;
if child3(1,k)>bounds(k,2)
child3(1,k) = bounds(k,2);
end
if child3(1,k)<bounds(k,1)
child3(1,k) = bounds(k,1);
end
end
child = [child;child3];
end
end
child_pop = child(:,1:dimension);
child_eva = calculate_pop(child_pop,x);
child_pop = [child_pop,child_eva];
combined_pop
function pop = combined_pop(pop,child_pop,target,dimension)
%合并父代和子代个体
pop1 = pop(:,1:target+dimension);
clear pop
pop = [pop1;child_pop];
select_pop
function pop = select_pop(pop,target,dimension,pop_size)
[popsize,~] = size(pop);
sort_pop = sortrows(pop,[target+dimension+1,-(target+dimension+2)]);
s_pop = [];
no_index = [];
num = 0;
if popsize > pop_size
%根据等级对pop进行升序排序,对拥挤距离进行降序排序
for i = 1:popsize-1
a = sort_pop(i,dimension+1:dimension+2);
b = sort_pop(i+1,dimension+1:dimension+2);
if norm(a-b)>1e-10
s_pop = [s_pop;sort_pop(i,:)];
num = num+1;
if num == pop_size
break;
end
else
no_index = [no_index;i];
end
end
if size(s_pop,1)< pop_size
n = pop_size - size(s_pop,1);
for j = 1:n
s_pop = [s_pop;sort_pop(no_index(j),:)];
end
end
pop = s_pop;
end
calculate_gd
function GD = calculate_gd(pop,x)
switch x
case 1
y = importdata('前沿数据/ZDT1.txt');
case 2
y = importdata('前沿数据/ZDT2.txt');
case 3
y = importdata('前沿数据/ZDT3.txt');
case 4
zdt4 = importdata('前沿数据/ZDT4.txt');
y = sortrows(zdt4,[1,2]);
case 5
y = importdata('前沿数据/ZDT6.txt');
end
%pop测试结果,y真实值
GD = 0;
[n,d] = size(pop);
pop = pop(:,d-3:d-2);
for i = 1:n
dis = pdist2(pop(i,:),y,'euclidean');
gd = (min(dis))^2;
% gd = min(dis);
GD = GD + gd;
end
GD = sqrt(GD/n);
% GD = GD/n
end
calculate_sp
function SP = calculate_sp(pop)
[x,y] = size(pop);
pop = pop(:,y-3:y-2);
mindis = zeros(x,1);
for i = 1:x
di = pop(i,:);
dis = pdist2(di,pop,'euclidean');
dis = sort(dis);
mindis(i) = dis(2);
end
meandis = mean(mindis);
Sp = 0;
for j = 1:x
sp = (meandis-mindis(j))^2;
Sp = Sp + sp;
end
SP = sqrt(Sp/x)/meandis;
calculate_pop
function evaluate = calculate_pop(pop,x)
%测试函数
[~,dim] = size(pop);
switch x
case 1 %ZDT1
fx1 = pop(:,1);
gx = 1+sum(pop(:,2:end),2).*(9/(dim-1));
hx = 1-sqrt(fx1./gx);
fx2 = gx.*hx;
evaluate = [fx1,fx2];
case 2 %ZDT2
fx1 = pop(:,1);
gx = 1+sum(pop(:,2:end),2).*(9/(dim-1));
hx = 1-(fx1./gx).^2;
fx2 = gx.*hx;
evaluate = [fx1,fx2];
case 3 %ZDT3
fx1 = pop(:,1);
gx = 1+sum(pop(:,2:end),2).*(9/(dim-1));
hx = 1-sqrt(fx1./gx)-(fx1./gx).*sin(10*pi.*fx1);
fx2 = gx.*hx;
evaluate = [fx1,fx2];
case 4 %ZDT4
fx1 = pop(:,1);
gx = 91+sum((pop(:,2:dim).^2-10.*cos(4*pi.*pop(:,2:dim))),2);
hx = 1-sqrt(fx1./gx);
fx2 = gx.*hx;
evaluate = [fx1,fx2];
case 5
x1 = pop(:,1);
fx1 = 1-exp(-4.*x1).*(sin(6*pi.*x1)).^6;
s = sum(pop(:,2:end),2);
gx = 1+9/(dim-1).*s;
hx = 1-(fx1./gx).^2;
fx2 = gx.*hx;
evaluate = [fx1,fx2];
case 6
n = -sum((pop-1/sqrt(dim)).^2,2);
m = -sum((pop+1/sqrt(dim)).^2,2);
fx1 = 1-exp(n);
fx2 = 1-exp(m);
evaluate = [fx1,fx2];
end
plotPareto
function plotPareto(x)
switch x
case 1
zdt1 = importdata('前沿数据/ZDT1.txt');
hold on
plot(zdt1(:,1),zdt1(:,2),'-')
legend('改进NSGA2测试前沿','理想前沿')
case 2
zdt2 = importdata('前沿数据/ZDT2.txt');
hold on
plot(zdt2(:,1),zdt2(:,2),'-')
legend('测试前沿','已知前沿')
case 3
zdt3 = importdata('前沿数据/ZDT3.txt');
hold on
plot(zdt3(:,1),zdt3(:,2),'*')
legend('测试前沿','已知前沿')
case 4
zdt4 = importdata('前沿数据/ZDT4.txt');
zdt4 = sortrows(zdt4,[1,2]);
hold on
plot(zdt4(:,1),zdt4(:,2),'-')
legend('测试前沿','已知前沿')
case 5
zdt6 = importdata('前沿数据/ZDT6.txt');
hold on
plot(zdt6(:,1),zdt6(:,2),'-')
legend('测试前沿','已知前沿')
otherwise
fprintf('错误')
end
end
运行结果
运行过程
保存的数据
文章来源:https://www.toymoban.com/news/detail-446521.html
文章来源地址https://www.toymoban.com/news/detail-446521.html
到了这里,关于多目标优化NSGA-II的实现(MATLAB完整代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!