OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀

这篇具有很好参考价值的文章主要介绍了OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.形态学操作概念

图像形态学操作是指基于形状的一系列图像处理操作的合集,主要是基于集合论基础上的形态学数学对图像进行处理。

形态学有四个基本操作:腐蚀、膨胀、开操作、闭操作,膨胀与腐蚀是图像处理中最常用的形态学操作手段。

二.形态学操作-膨胀

跟卷积操作类似,假设有图像A和结构元素B,结构元素B在图像A上面移动,其中结构元素B定义其中心为锚点,计算B覆盖下A的最大像素值用来替换锚点的像素,其中B作为结构体可以是任意形状。

膨胀的原理:

膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为图像A)与结构元素(我们称之为卷积核B)进行卷积。核可以是任何的形状和大小,拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoin)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,可以把核视为模板或者掩码。

OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀

膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。

膨胀和腐蚀操作的核心内容是结构元素。一般来说结构元素是由元素为1或者0的矩阵组成。结构元素为1的区域定义了图像的领域,领域内的像素在进行膨胀和腐蚀等形态学操作时要进行考虑。

膨胀函数API接口:

dst=cv2.dilate(  
        InputArray src,  
        OutputArray dst,  
        InputArray kernel,  
        Point anchor=Point(-1,-1),  
        int iterations=1,  
        int borderType=BORDER_CONSTANT,  
        const Scalar& borderValue=morphologyDefaultBorderValue()   
    );  
参数详解:
第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。

第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。

第三个参数,InputArray类型的kernel,膨胀操作的核。若为NULL时,表示的是使用参考点位于中心3x3的核。
我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。

其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:

矩形: MORPH_RECT
交叉形: MORPH_CROSS
椭圆形: MORPH_ELLIPSE
而getStructuringElement函数的第二和第三个参数分别是内核的尺寸以及锚点的位置。

我们一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得getStructuringElement函数的返回值。对于锚点的位置,有默认值Point(-1,-1),表示锚点位于中心。且需要注意,十字形的element形状唯一依赖于锚点的位置。而在其他情况下,锚点只是影响了形态学运算结果的偏移。



getStructuringElement函数相关的调用示例代码如下:
int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸
 //获取自定义核
Mat element = getStructuringElement(MORPH_RECT,
	Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),
	Point( g_nStructElementSize, g_nStructElementSize ));

第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。

第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。

第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。

第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。

使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。

结构元素的API函数接口

cv::Mat kernel = getStructuringElement(int shape,Size ksize,Point anchor);
//返回值:返回指定形状和尺寸的结构元素


//结构元素的定义:形状 (MORPH_RECT(矩形核)
//MORPH_CROSS(十字交叉形核) 
//MORPH_ELLIPSE(椭圆形核));结构元素大小;锚点 默认是Point(-1, -1)意思就是中心像素,也可以自己指定

//函数接口示例
cv::Mat elementRect,elementCross,elementEllipse;
 
    elementRect = cv::getStructuringElement(cv::MORPH_RECT,cv::Size(3,3),cv::Point(-1,-1));

    elementCross = 
    cv::getStructuringElement(cv::MORPH_CROSS,cv::Size(3,3),cv::Point(-1,-1));

    elementEllipse = 
    cv::getStructuringElement(cv::MORPH_ELLIPSE,cv::Size(5,5),cv::Point(-1,-1));

此外,我们也可以自定义结构元素,如下:
使用Mat_模板类自定义5×5大小十字形、菱形、方形、x形结构元素:

 //自定义核(结构元素)
    cv::Mat_<uchar> cross(5,5);
    cv::Mat_<uchar> diamond(5,5);
    cv::Mat_<uchar> x(5,5);
    cv::Mat_<uchar> square(5,5);
 
    // Creating the cross-shaped structuring element
    cross <<
            0, 0, 1, 0, 0,
            0, 0, 1, 0, 0,
            1, 1, 1, 1, 1,
            0, 0, 1, 0, 0,
            0, 0, 1, 0, 0;
 
    // Creating the diamond-shaped structuring element
    diamond <<
            0, 0, 1, 0, 0,
            0, 1, 1, 1, 0,
            1, 1, 1, 1, 1,
            0, 1, 1, 1, 0,
            0, 0, 1, 0, 0;
 
    // Creating the x-shaped structuring element
    x <<
            1, 0, 0, 0, 1,
            0, 1, 0, 1, 0,
            0, 0, 1, 0, 0,
            0, 1, 0, 1, 0,
            1, 0, 0, 0, 1;
 
    // Creating the square-shaped structuring element
    square <<
            1, 1, 1, 1, 1,
            1, 1, 1, 1, 1,
            1, 1, 1, 1, 1,
            1, 1, 1, 1, 1,
            1, 1, 1, 1, 1;
 
    int xnr = x.rows;
    int xnl = x.cols;
    for(int j = 0;j<xnr;j++)
    {
        char *data = x.ptr<char>(j);
        for(int i = 0; i<xnl; i++)
        {
            int value = data[i];
            std::cout<<value<<" ";
        }
        std::cout<<std::endl;
    }

=========================================================================

三.形态学操作—腐蚀

腐蚀就是清除掉图像的一些毛刺和细节,腐蚀一般可以用来消除噪点,分割出独立的图像元素等。其本质上也是一种空间滤波,设定一个掩模,掩模中心逐次滑过每一个像素点,当前像素点(即掩模中心所对应的位置)的值设为掩模覆盖区域中像素的最小值。

腐蚀原理:

膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为图像A)与结构元素(我们称之为卷积核B)进行卷积。核可以是任何的形状和大小,拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoin)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,可以把核视为模板或者掩码。掩膜中心位置的像素点是否与周围领域的像素点颜色一样(即是否是白色点,即像素值是否为255),若一致,则保留,不一致则该点变为黑色(值即为0)。

OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀

腐蚀函数API接口:

dst=cv2.erode(  
        InputArray src,  
        OutputArray dst,  
        InputArray kernel,  
        Point anchor=Point(-1,-1),  
        int iterations=1,  
        int borderType=BORDER_CONSTANT,  
        const Scalar& borderValue=morphologyDefaultBorderValue()  
     );  
  
参数说明:
第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或 CV_64F其中之一。
第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
第三个参数,InputArray类型的kernel,膨胀操作的核。若为NULL时,表示的是使用参考点位于中心3x3的核。
我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。

其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:

矩形: MORPH_RECT
交叉形: MORPH_CROSS
椭圆形: MORPH_ELLIPSE
而getStructuringElement函数的第二和第三个参数分别是内核的尺寸以及锚点的位置。

我们一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得getStructuringElement函数的返回值。对于锚点的位置,有默认值Point(-1,-1),表示锚点位于中心。且需要注意,十字形的element形状唯一依赖于锚点的位置。而在其他情况下,锚点只是影响了形态学运算结果的偏移。

getStructuringElement函数相关的调用示例代码如下:

调用这样之后,我们便可以在接下来调用erode或dilate函数时,第三个参数填保存了getStructuringElement返回值的Mat类型变量。对应于我们上面的示例,就是填element变量。



第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。
第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
第七个参数,const Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。
 
使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。

腐蚀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0。

膨胀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为0,则该像素为0,否则为1。

=========================================================================

代码实现:

#include"stdafx.h"
#include <opencv2/opencv.hpp>
#include <iostream>
#include<stdio.h>
using namespace cv;
using namespace std;


int _tmain(int argc, _TCHAR* argv[])
{
	Mat image1 = imread("F:/photo/qx.jpg", 1);
	namedWindow("input_picture1");
	imshow("input_picture1", image1);

	Mat image2;
	Mat image3;
	cvtColor(image1, image2, COLOR_RGB2GRAY);
	namedWindow("input_picture2");
	imshow("input_picture2", image2);

	threshold(image2, image3, 65, 255, THRESH_BINARY);
	namedWindow("input_picture3");
	imshow("input_picture3", image3);

	Mat eroded;
	erode(image3, eroded, Mat());
	namedWindow("erode");
	imshow("erode", eroded);

	Mat dilated;
	dilate(image3, dilated, Mat());
	namedWindow("dilate");
	imshow("dilate", dilated);

	waitKey(0);
	return 0;
}

图像处理效果:

原图和灰度图

OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀

灰度图和二值化图: 

OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀

 二值化图像腐蚀膨胀效果:

OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀

OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀文章来源地址https://www.toymoban.com/news/detail-446671.html

到了这里,关于OpenCV图像处理学习十,图像的形态学操作——膨胀腐蚀的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用opencv c++完成图像中水果分割(分水岭、形态学操作、通道处理)单独标记每个水果

    2023.4.16日更新 1. 利用一阶矩增加了草莓等水果的质心绘制。 2. 绘制出了生长方向。 原为本人机器人视觉作业。参考文章http://t.csdn.cn/eQ0qp(目测是上一届的学长) 要求:在网络上寻找水果重叠在一起的图片、经过一系列图像处理,完成每个水果的分割,并单独标记出来。 导

    2024年02月04日
    浏览(86)
  • 我在Vscode学OpenCV 图像处理一(阈值处理、形态学操作【连通性,腐蚀和膨胀,开闭运算,礼帽和黑帽,内核】)

    例如,设定阈值为127,然后:  将图像内所有像素值大于 127 的像素点的值设为 255。  将图像内所有像素值小于或等于 127 的像素点的值设为 0。 cv2.threshold() 和 cv2.adaptiveThreshold() 是 OpenCV 中用于实现阈值处理的两个函数,它们之间有以下区别: 1.1.1. cv2.threshold(): 这个函数

    2024年02月05日
    浏览(60)
  • (数字图像处理MATLAB+Python)第九章图像形态学运算-第三节:二值图像的形态学处理

    形态滤波 :是一种在数字图像处理中常用的图像处理技术,用于改善图像的质量、提取图像的特定特征或去除图像中的噪声。形态滤波主要基于形态学运算,通过结构元素(也称为模板)对图像进行局部区域的操作,从而改变图像的形状和结构。选择不同形状(如各向同性的

    2024年02月08日
    浏览(66)
  • 形态学运算与仿真:图像处理中形态学操作的简单解释

    形态学是图像处理领域的一个分支,主要用于描述和处理图像中的形状和结构。形态学可以用于提取图像中的特征、消除噪声、改变图像的形状等。其中形态学的核心操作是形态学运算。 形态学运算是一种基于形状的图像处理技术,它是通过结构元素与图像进行特定运算的方

    2024年02月04日
    浏览(67)
  • 第九章 形态学图像处理

    图像形态学也叫数学形态学,是指一系列处理图像 形状特征 的图像处理技术,是一门建立在格伦和拓扑学基础上的图像分析学科,是数学形态学图像处理的基本理论。其基本思想是利用一种特殊的 结构元 来测量或提取输入图像中相应的形状或特征,以便进一步进行图像分析

    2024年02月09日
    浏览(43)
  • 形态学图像处理和图像分割MATLAB实验

    一、实验目的 理解腐蚀和膨胀的原理,掌握开运算、闭运算及形态学的边界提取。 掌握孤立点检测、线检测和边缘检测的方法。 掌握全局阈值处理的方法。 二、实验内容 1. 开运算和闭运算实验。 图1(a)显示了一幅被噪声图像污染的指纹图像,图1(b)给出了结构元,请自编程

    2024年02月06日
    浏览(51)
  • 数字图像处理之matlab实验(五):形态学图像处理

    常见的形态学处理包括腐蚀、膨胀、开运算、闭运算。不同的操作有不同的作用,同样的操作在不同类型的图片上也有不同效果,具体效果如下表格所示。要求熟练掌握对二值图像的形态学处理。 不同操作对不同类型图像处理效果 一、对二值图像进行处理 1、结构元素 在开

    2024年02月04日
    浏览(65)
  • python数字图像处理基础(四)——图像平滑处理、形态学操作、图像梯度

    让有噪音点(图像上显得突兀的像素点)的图像变得更加自然顺眼 1.均值滤波 blur() 根据核的大小(rowcol),每个像素值就等于以此像素为中心的周围rowcol个像素的平均值。 核大一点,显然越平滑、模糊。 result = cv2.blur(img, (15, 15)) 2.方框滤波 boxFilter() normalize=true的时候,效果同

    2024年01月18日
    浏览(81)
  • 图像处理技巧形态学滤波之腐蚀操作

    欢迎回来,我的图像处理爱好者们!今天,让我们深入研究图像处理领域中的形态学计算。这些非线性的图像处理技术允许我们操纵图像中对象的形状和结构。在本系列中,我们将依次介绍四种基本的形态学操作:腐蚀、膨胀、开操作和闭操作。 闲话少说,我们直接开始吧!

    2024年02月13日
    浏览(55)
  • 简要介绍 | 基于Python的图像形态学处理概述

    注1:本文系“简要介绍”系列之一,仅从概念上对基于Python的图像形态学处理进行非常简要的介绍,不适合用于深入和详细的了解。 Digital terrain models from airborne laser scanning for the automatic extraction of natural and anthropogenic linear structures In: Geomorphological Mapping: a professional handbook of

    2024年02月10日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包