【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

这篇具有很好参考价值的文章主要介绍了【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、实验目的

(1)了解和掌握图像处理工具 Matlab ,熟悉基于 Matlab 的图像处理函数,并为下一步编程进行图像处理打下基础。
(2)理解色彩的概念,掌握图像代数运算,几何变换方法。

二、实验原理

1.灰度线性变换就是将图像中所有点的灰度按照线性灰度变换函数进行变换。
2.直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。
3.图像算术运算:两幅输入图像之间进行的点对点的加、减、乘、除运算后得到输出图像的过程。
4.图像插值是一种基本的图像处理方法,它可以为数字图像增加或减少像素的数目。
当图像被放大时,像素会相应地增加,该像素增加的过程实际就是插值程序自动选择信息较好的像素作为新的像素以弥补空白像素空间的过程。虽然经过插值后图像可以变得更平滑、干净,但由于新增加的像素也仅仅只是原始像素的某种组合而已,所以图像的插值运算并不会增加新的图像信息。

三、实验步骤(包括分析、代码和波形)

1.滤波、色彩空间、代数运算、锐化等技术实现美化

【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

2.加入皮肤的亮白处理

(1)主程序

主设计方案:
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

代码:

%1.主程序
clear,clc,close all;
ImageOrigin=im2double(imread('lotus1.bmp'));
figure,imshow(ImageOrigin),title('原图');
DBImage=DBfilt(ImageOrigin);                 %双边滤波

SkinImage1=FirstFilter(ImageOrigin);            %%初步过滤
SkinArea=SecondFilter(SkinImage1);           %%YCgCr空间范围肤色检测

SkinFuse=Fuse(ImageOrigin,DBImage,SkinArea);%图像融合
SkinBeautify=Sharp(SkinFuse);               %图像锐化

Meibai=MB(SkinBeautify);

(2)图像平滑

【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

代码:

%2.图像平滑
function Out=DBfilt(In)
    [height,width,c] = size(In); 
    win=15;       % 定义双边滤波窗口宽度  
    sigma_s=6; sigma_r=0.1; % 双边滤波的两个标准差参数  
    [X,Y] = meshgrid(-win:win,-win:win); 
    Gs = exp(-(X.^2+Y.^2)/(2*sigma_s^2));%计算邻域内的空间权值    
    Out=zeros(height,width,c); 
    for k=1:c
        for j=1:height    
            for i=1:width  
                temp=In(max(j-win,1):min(j+win,height),max(i-win,1):min(i+win,width),k);
                Gr = exp(-(temp-In(j,i,k)).^2/(2*sigma_r^2));%计算灰度邻近权值        
                % W为空间权值Gs和灰度权值Gr的乘积       
                W = Gr.*Gs((max(j-win,1):min(j+win,height))-j+win+1,(max(i-win,1):min(i+win,width))-i+win+1);      
                Out(j,i,k)=sum(W(:).*temp(:))/sum(W(:));            
            end
        end  
    end
    figure,imshow(Out),title('双边滤波');
end

结果:
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

(3)皮肤区域分割

【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)
3.1基于RGB空间的非肤色像素初步过滤
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

代码:

%3.皮肤区域分割
%3.1基于RGB空间的非肤色像素初步过滤
function Out=FirstFilter(In)
    Out=In;
    [height,width,c] = size(In); 
    IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);
    for j=1:height
        for i=1:width
            if (IR(j,i)<160/255 && IG(j,i)<160/255 && IB(j,i)<160) && (IR(j,i)>IG(j,i) && IG(j,i)>IB(j,i))
                Out(j,i,:)=0;
            end
            if IR(j,i)+IG(j,i)>500/255
                Out(j,i,:)=0;
            end
            if IR(j,i)<70/255 && IG(j,i)<40/255 && IB(j,i)<20/255
                Out(j,i,:)=0;
            end
        end
    end
 
    figure,imshow(Out);title('非肤色初步过滤'); 
end

3.2基于YCgCr空间范围肤色分割
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

代码:

%3.2基于YCgCr空间范围肤色分割
function Out=SecondFilter(In)
    IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);       
    [height,width,c] = size(In);
    Out=zeros(height,width);
    for i=1:width
        for j=1:height  
           R=IR(j,i); G=IG(j,i); B=IB(j,i);       
           Cg=(-81.085)*R+(112)*G+(-30.915)*B+128;  
           Cr=(112)*R+(-93.786)*G+(-18.214)*B+128;         
           if Cg>=85 && Cg<=135 && Cr>=-Cg+260 && Cr<=-Cg+280       
               Out(j,i)=1;          
           end
        end
    end
    Out=medfilt2(Out,[3 3]);
    
    figure,imshow(Out),title('YCgCr空间范围肤色检测');    
end

结果:
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

(4)图像融合

【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

代码:

%4.图像融合
function Out=Fuse(ImageOrigin,DBImage,SkinArea)
    Skin=zeros(size(ImageOrigin));
    Skin(:,:,1)=SkinArea;   
    Skin(:,:,2)=SkinArea;  
    Skin(:,:,3)=SkinArea;
    Out=DBImage.*Skin+double(ImageOrigin).*(1-Skin);
    
    figure,imshow(Out);title('肤色与背景图像融合');
end

结果:
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

(5)图像锐化

【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

代码:

%5.图像锐化
function Out=Sharp(In)
    H=[0 -1 0;-1 4 -1;0 -1 0]; %Laplacian锐化模板
    Out(:,:,:)=imfilter(In(:,:,:),H); 
    Out=Out/3+In;
%     imwrite(Out,'man4.jpg');
    figure,imshow(Out),title('Laplacia锐化图像');
end

结果:
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

(6)皮肤亮白处理

皮肤的亮白处理采用白平衡法
美白主要分为两个阶段
(1)近白色点的检测,作为参考白点
(2)根据近白点算出RGB调整比例

YCrCb空间介绍
YCrCb又称YUV,主要用于优化彩色视频信号的传输,使其向后兼容老式黑白电视。
Y分量表示图像的亮度成分
Cr分量表示图像红色部分与亮度值之间的差异
Cb分量表示图像蓝色部分与亮度值之间的差异
以lena图为例,分别展示YCrCb三通道的实际分离效果

代码:

im = imread('face10.jpg');
im1=rgb2ycbcr(im);%将图片的RGB值转换成YCbCr值%
YY=im1(:,:,1);
Cb=im1(:,:,2);
Cr=im1(:,:,3);
[x y z]=size(im);
tst=zeros(x,y);
Mb=mean(mean(Cb));
Mr=mean(mean(Cr));
%计算Cb、Cr的均方差%
Tb = Cb-Mb;
Tr = Cr-Mr;
Db=sum(sum((Tb).*(Tb)))/(x*y);
Dr=sum(sum((Tr).*(Tr)))/(x*y);
%根据阀值的要求提取出near-white区域的像素点%
cnt=1;    
for i=1:x
    for j=1:y
        b1=Cb(i,j)-(Mb+Db*sign(Mb));
        b2=Cr(i,j)-(1.5*Mr+Dr*sign(Mr));
        if (b1<abs(1.5*Db) && b2<abs(1.5*Dr))
           Ciny(cnt)=YY(i,j);
           tst(i,j)=YY(i,j);
           cnt=cnt+1;
        end
    end
end
cnt=cnt-1;
iy=sort(Ciny,'descend');%将提取出的像素点从亮度值大的点到小的点依次排列%
nn=round(cnt/10);
Ciny2(1:nn)=iy(1:nn);%提取出near-white区域中10%的亮度值较大的像素点做参考白点%
%提取出参考白点的RGB三信道的值% 
mn=min(Ciny2);
for i=1:x
    for j=1:y
        if tst(i,j)<mn
           tst(i,j)=0;
        else
           tst(i,j)=1;
        end
    end
end
R=im(:,:,1);
G=im(:,:,2);
B=im(:,:,3);

R=double(R).*tst;
G=double(G).*tst;
B=double(B).*tst;

%计算参考白点的RGB的均值%
Rav=mean(mean(R));
Gav=mean(mean(G));
Bav=mean(mean(B));

Ymax=double(max(max(YY)))*0.15;%计算出图片的亮度的最大值%
 
%计算出RGB三信道的增益% 
Rgain=Ymax/Rav;
Ggain=Ymax/Gav;
Bgain=Ymax/Bav;

%通过增益调整图片的RGB三信道%
im(:,:,1)=im(:,:,1)*Rgain;
im(:,:,2)=im(:,:,2)*Ggain;
im(:,:,3)=im(:,:,3)*Bgain;

imshow(im),title('皮肤亮白处理');





结果:
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)

(7)整体代码

代码:

%1.主程序
clear,clc,close all;
ImageOrigin=im2double(imread('lotus1.bmp'));
figure,imshow(ImageOrigin),title('原图');
DBImage=DBfilt(ImageOrigin);                 %双边滤波

SkinImage1=FirstFilter(ImageOrigin);            %%初步过滤
SkinArea=SecondFilter(SkinImage1);           %%YCgCr空间范围肤色检测

SkinFuse=Fuse(ImageOrigin,DBImage,SkinArea);%图像融合
SkinBeautify=Sharp(SkinFuse);               %图像锐化

Meibai=MB(SkinBeautify);

%2.图像平滑
function Out=DBfilt(In)
    [height,width,c] = size(In); 
    win=15;       % 定义双边滤波窗口宽度  
    sigma_s=6; sigma_r=0.1; % 双边滤波的两个标准差参数  
    [X,Y] = meshgrid(-win:win,-win:win); 
    Gs = exp(-(X.^2+Y.^2)/(2*sigma_s^2));%计算邻域内的空间权值    
    Out=zeros(height,width,c); 
    for k=1:c
        for j=1:height    
            for i=1:width  
                temp=In(max(j-win,1):min(j+win,height),max(i-win,1):min(i+win,width),k);
                Gr = exp(-(temp-In(j,i,k)).^2/(2*sigma_r^2));%计算灰度邻近权值        
                % W为空间权值Gs和灰度权值Gr的乘积       
                W = Gr.*Gs((max(j-win,1):min(j+win,height))-j+win+1,(max(i-win,1):min(i+win,width))-i+win+1);      
                Out(j,i,k)=sum(W(:).*temp(:))/sum(W(:));            
            end
        end  
    end
    figure,imshow(Out),title('双边滤波');
end
%3.皮肤区域分割
%3.1基于RGB空间的非肤色像素初步过滤
function Out=FirstFilter(In)
    Out=In;
    [height,width,c] = size(In); 
    IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);
    for j=1:height
        for i=1:width
            if (IR(j,i)<160/255 && IG(j,i)<160/255 && IB(j,i)<160) && (IR(j,i)>IG(j,i) && IG(j,i)>IB(j,i))
                Out(j,i,:)=0;
            end
            if IR(j,i)+IG(j,i)>500/255
                Out(j,i,:)=0;
            end
            if IR(j,i)<70/255 && IG(j,i)<40/255 && IB(j,i)<20/255
                Out(j,i,:)=0;
            end
        end
    end
 
    figure,imshow(Out);title('非肤色初步过滤'); 
end
%3.2基于YCgCr空间范围肤色分割
function Out=SecondFilter(In)
    IR=In(:,:,1); IG=In(:,:,2);IB=In(:,:,3);       
    [height,width,c] = size(In);
    Out=zeros(height,width);
    for i=1:width
        for j=1:height  
           R=IR(j,i); G=IG(j,i); B=IB(j,i);       
           Cg=(-81.085)*R+(112)*G+(-30.915)*B+128;  
           Cr=(112)*R+(-93.786)*G+(-18.214)*B+128;         
           if Cg>=85 && Cg<=135 && Cr>=-Cg+260 && Cr<=-Cg+280       
               Out(j,i)=1;          
           end
        end
    end
    Out=medfilt2(Out,[3 3]);
    
    figure,imshow(Out),title('YCgCr空间范围肤色检测');    
end
%4.图像融合
function Out=Fuse(ImageOrigin,DBImage,SkinArea)
    Skin=zeros(size(ImageOrigin));
    Skin(:,:,1)=SkinArea;   
    Skin(:,:,2)=SkinArea;  
    Skin(:,:,3)=SkinArea;
    Out=DBImage.*Skin+double(ImageOrigin).*(1-Skin);
    
    figure,imshow(Out);title('肤色与背景图像融合');
end
%5.图像锐化
function Out=Sharp(In)
    H=[0 -1 0;-1 4 -1;0 -1 0]; %Laplacian锐化模板
    Out(:,:,:)=imfilter(In(:,:,:),H); 
    Out=Out/3+In;
%     imwrite(Out,'man4.jpg');
    figure,imshow(Out),title('Laplacia锐化图像');
end
%6.皮肤亮白处理
function Out=MB(SkinBeautify)
    %im = imread('face9.jpg');
Out=rgb2ycbcr(SkinBeautify);%将图片的RGB值转换成YCbCr值%
YY=Out(:,:,1);
Cb=Out(:,:,2);
Cr=Out(:,:,3);
[x y z]=size(SkinBeautify);
tst=zeros(x,y);
Mb=mean(mean(Cb));
Mr=mean(mean(Cr));
%计算Cb、Cr的均方差%
Tb = Cb-Mb;
Tr = Cr-Mr;
Db=sum(sum((Tb).*(Tb)))/(x*y);
Dr=sum(sum((Tr).*(Tr)))/(x*y);
%根据阀值的要求提取出near-white区域的像素点%
cnt=1;    
for i=1:x
    for j=1:y
        b1=Cb(i,j)-(Mb+Db*sign(Mb));
        b2=Cr(i,j)-(1.5*Mr+Dr*sign(Mr));
        if (b1<abs(1.5*Db) && b2<abs(1.5*Dr))
           Ciny(cnt)=YY(i,j);
           tst(i,j)=YY(i,j);
           cnt=cnt+1;
        end
    end
end
cnt=cnt-1;
iy=sort(Ciny,'descend');%将提取出的像素点从亮度值大的点到小的点依次排列%
nn=round(cnt/10);
Ciny2(1:nn)=iy(1:nn);%提取出near-white区域中10%的亮度值较大的像素点做参考白点%
%提取出参考白点的RGB三信道的值% 
mn=min(Ciny2);
for i=1:x
    for j=1:y
        if tst(i,j)<mn
           tst(i,j)=0;
        else
           tst(i,j)=1;
        end
    end
end
R=SkinBeautify(:,:,1);
G=SkinBeautify(:,:,2);
B=SkinBeautify(:,:,3);

R=double(R).*tst;
G=double(G).*tst;
B=double(B).*tst;

%计算参考白点的RGB的均值%
Rav=mean(mean(R));
Gav=mean(mean(G));
Bav=mean(mean(B));

Ymax=double(max(max(YY)))*0.15;%计算出图片的亮度的最大值%
 
%计算出RGB三信道的增益% 
Rgain=Ymax/Rav;
Ggain=Ymax/Gav;
Bgain=Ymax/Bav;

%通过增益调整图片的RGB三信道%
SkinBeautify(:,:,1)=SkinBeautify(:,:,1)*Rgain;
SkinBeautify(:,:,2)=SkinBeautify(:,:,2)*Ggain;
SkinBeautify(:,:,3)=SkinBeautify(:,:,3)*Bgain;

    figure,imshow(Out),title('皮肤美化');
end

3.尝试其它肤色检测处理

肤色检测
肤色是人类皮肤重要特征之一,在检测人脸或手等目标时常采用肤色检测的方法,将相关区域从图像中分割出来。
肤色检测方法:
肤色检测方法有很多,但无论是基于不同的色彩空间还是不同的肤色模型,其根本出发点在于肤色分布的聚集性,即肤色的颜色分量一般聚集在某个范围内。通过大量的肤色样本进行统计,找出肤色颜色分量的聚集范围或用特殊的分布模型去模拟肤色分布,进而实现对任意像素颜色的判别。
本例主要采用肤色颜色分量分布范围的方法,简要介绍肤色模型的概念。
不同彩色空间肤色分布范围
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)
肤色模型
肤色模型是根据大量样本的统计数据建立以确定肤色的分布规律,进而判断像素的色彩是否属于肤色或与肤色相似程度的模型。常用的有阙值模型、高斯模型和椭圆模型。
1)阈值模型
國值模型是用数学表达式明确肤色分布范围的建模方法。这类方法依据肤色分布范围进行检测,判断简单、明确、快捷,但需要选择合适的颜色空间及合适的参数。
2)高斯肤色模型
利用高斯函数模拟肤色在CbCr色度空间的分布
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)
为色度向量的均值和协方差矩阵,可通过多种方式获取,数值略有区别,本例选择
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)
得到肤色分布的概率图后,确定阈值T,如果p>T,则对应像素点为肤色点﹔反之,为非像素点。可以看出,肤色检测的精确度依赖于阈值的选择
在下面示例中,不讨论最佳阈值的确定,采用固定阈值的方法,实施效果因不同图像而异;
3)椭圆模型
将图像从RGB转换到YCbCr彩色空间,并进行非线性分段色彩变换,变换后肤色的CbCr分布近似椭圆,经实验可确定椭圆表达式的参数。对于待判断的颜色,经同样的变换,若在椭圆内,则可以判断其为肤色,否则为非肤色;
检测出的肤色区域存在不连续、噪声大的特点,往往需要利用滤波等方法,修正肤色区域,建议在后续学习过滤波方法后,改进相应的程序。

代码:

clear,clc,close all;
Image=imread('lotus1.bmp');
figure,imshow(Image),title('原图');
r=double(Image(:,:,1));             % 提取红色分量并转化为高精度
g=double(Image(:,:,2));
b=double(Image(:,:,3));
[N,M]=size(r);                      % 提取矩阵r的大小 NxM
miu=[117.4361 156.5599]';           % 高斯肤色模型均值
sigma=[160.1301 12.1430;12.1430 299.4574];      % 高斯肤色模型协方差矩阵
cbcr=zeros(2,1);                    % 生成 2x1矩阵
SkinCbCrG=zeros(N,M);               % 生成所有值为0的 NxM矩阵用于存放处理后图像
SkinRGB=zeros(N,M);
SkinHSV=zeros(N,M);
SkinCbCr=zeros(N,M);
thresh=0.35;                        % 肤色概率二值化阙值
for i=1:M                           % 循环图像每一个像素点   列循环
    for j=1:N                       % 行循环
       R=r(j,i);                    % 将图像红色分量中(j,i)点值赋值给R
       G=g(j,i);
       B=b(j,i);
       if (R>95 && G>40 && B>20 && (R-G)>15 && R-B>15) || ...               % RGB空间肤色检测
           (R>220 && G>210 && B>170 && R-B<=15 && R>B && G>B)               % 符合RGB肤色检测条件的像素点值置1则为白色,其他不符合条件的像素点为0黑色
           SkinRGB(j,i)=1;
       end
       
       maxRGB=max(max(R,G),B);       % 取三分量中同一点最大值
       minRGB=min(min(R,G),B);       % 取三分量中同一点最小值
       C=maxRGB-minRGB;              % 取最大差值
       V=maxRGB;                     % 最大值赋值给参数V
       if V==0                       % 比较最大值是否等于零  
           S=0;
       else
           S=C/V;                    % 最大值不等于零则 C最大差值/V最大值
       end
       if maxRGB==R                  % 如果该点最大值==红色分量值;作如下处理
           H=60*mod((G-B)/C,6);
       elseif maxRGB==G              % 如果该点最大值==绿色分量值;作如下处理
           H=60*((B-R)/C+2);
       elseif maxRGB==B              % 如果该点最大值==蓝色分量值;作如下处理
           H=60*((R-G)/C+4);
       end                           % 符合HSV肤色检测 将该点值置1
       if ((H>=0 && H<=25) || (H>=335 && H<=360)) && (S>=0.2 && S<=0.6) && V>=0.4
           SkinHSV(j,i)=1;          % 优化 HSV 效果增强?如何改?为什么这样改?
       end
       
       R=R/255;G=G/255;B=B/255;             % RGB 转 YCrCb 公式
       Cb=224*(-0.1687*R-0.3313*G+0.5*B)+128;
       Cr=224*(0.5*R-0.4187*G-0.0813*B)+128;
       if Cb>=77 && Cb<=127 && Cr>=133 && Cr<=173   % 符合 YCrCb肤色检测 将该点值置1
            SkinCbCr(j,i)=1;
       end
       
       cbcr= [Cb Cr]';                               % YCbCr空间基于高斯模型的肤色检测
       p=exp(-0.5*((cbcr-miu)')*(inv(sigma))*(cbcr-miu));   % 高斯模型函数
       if p>thresh                                    % p > 阙值0.35  值置1
           SkinCbCrG(j,i)=1;
       end
    end
end
figure,imshow(SkinRGB),title('RGB空间肤色检测');
figure,imshow(SkinHSV),title('HSV空间肤色检测');
figure,imshow(SkinCbCr),title('YCbCr空间范围肤色检测');
figure,imshow(SkinCbCrG),title('YCbCr空间高斯模型肤色检测');
%imwrite(SkinRGB,'skinrgb3.jpg');
%imwrite(SkinHSV,'skinhsv3.jpg');
%imwrite(SkinCbCr,'skincbcr3.jpg');
%imwrite(SkinCbCrG,'skinCbCrG3.jpg');




结果:
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)
【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)
从运行结果可以看出,利用各个彩色空间肤色分布范围能够检测出肤色,HSV空间检测的结果比较零散。总体来讲,基于肤色分布范围的检测方法的准确率不高;基于高斯模型的检测结果相对较好,若采用动态阈值方法﹐会进一步提高检测准确性;

四、实验总结

在人脸检测中也常常用到YCrCb空间,因为一般的图像都是基于RGB空间的,在RGB空间里人脸的肤色受亮度影响相当大,所以肤色点很难从非肤色点中分离出来,也就是说在此空间经过处理后,肤色点是离散的点,中间嵌有很多非肤色,这为肤色区域标定(人脸标定、眼睛等)带来了难题。如果把RGB转为YCrCb空间的话,可以忽略Y(亮度)的影响,因为该空间受亮度影响很小,肤色会产生很好的类聚。这样就把三维的空间降为二维的CrCb,肤色点会形成一定得形状,如:人脸的话会看到一个人脸的区域,手臂的话会看到一条手臂的形态,对处理模式识别很有好处,根据经验某点的CrCb值满足:133≤Cr≤173,77≤Cb≤127 那么该点被认为是肤色点,其他的就为非肤色点。文章来源地址https://www.toymoban.com/news/detail-446961.html

到了这里,关于【数字图像处理】实验(3)——图像综合应用:皮肤美化(MATLAB实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数字图像处理实验四--图像变换

    (图像变换) 实验内容: 对图像lena、cameraman和face进行傅里叶变换,观察图像能量在频谱图中的分布情况。 利用Matlab生成下列图像,并对其进行旋转30度、90度和120度,然后对他们分别进行傅里叶变换。 对图像lena、cameraman和face用DCT变换进行图像压缩,舍掉的变换系数分别小

    2024年04月14日
    浏览(66)
  • 数字图像处理报告:实验4 图像复原

    (四)实验4 图像复原 一、实验主题 学习图像复原的相关原理及实现方法,并掌握逆滤波、维纳滤波的原理与程序实现。 二、实验目的 1.掌握图像复原的基本原理和方法。 2.学习使用程序设计环境。 3.使用设计框架构造应用程序。 4.掌握逆滤波、维纳滤波的原理和实现

    2024年02月08日
    浏览(42)
  • 数字信号与图像处理实验三:图像处理基础与图像变换

    ​ 通过本实验加深对数字图像的理解,熟悉MATLAB中的有关函数;应用DCT对图像进行变换;熟悉图像常见的统计指标,实现图像几何变换的基本方法。 ​ 选择两幅图像,读入图像并显示,同时使用Matlab计算图像的大小,灰度平均值、协方差矩阵、灰度标准差和相关系数。 DC

    2024年02月04日
    浏览(62)
  • 数字图像处理实验之Matlab对图像的基本处理

    1、提取Lena图像的左半上角部分,与原始Lena图像在同一个figure中显示,并做适当命名 效果图 2、利用 imnoise , 对原始Lena图像叠加高斯噪声,产生4幅、14幅、140幅的含噪图像。对这些含噪图像采用 相加  运算,来验证、比较图像相加消除叠加性噪声的效果。将原始图像、1幅噪

    2024年02月03日
    浏览(64)
  • 数字图像处理实验报告

    目录 实验二、图像在空间域上的处理方法 实验三、图像在频率域上的处理方法 一、实验目的 了解图像亮(灰)度变换与空间滤波的意义和手段; 熟悉图像亮(灰)度变换与空间滤波的MATLAB函数和语法; 熟练掌握应用MATLAB软件编程进行图像亮(灰)度变换与空间滤波的方法

    2024年02月08日
    浏览(40)
  • (数字图像处理MATLAB+Python)第十章图像分割-第四,五节:分水岭分割和综合案例

    分水岭分割 :图像处理中常用的一种分割方法,它基于图像中灰度或颜色的变化来划分不同的区域。分水岭分割算法的原理是基于地理学上的分水岭概念。将图像看作一个 地貌图 ,在图像中低洼的部分被看作水池,而高处则表示山脉。通过在图像中加入水并让其逐渐充满,

    2024年02月10日
    浏览(52)
  • (数字图像处理MATLAB+Python)第七章图像锐化-第四节:频域高通滤波与综合案例

    频域高通滤波 :是一种基于频域表示的图像处理技术,用于增强或突出图像中高频成分的方法。它通过将图像转换到频域,应用高通滤波器来抑制或减弱低频成分,从而增强图像的边缘和细节 在频域中,可以设计各种类型的高通滤波器来实现不同的频率响应 理想的高通滤波

    2024年02月08日
    浏览(61)
  • 数字图像处理之matlab实验(五):形态学图像处理

    常见的形态学处理包括腐蚀、膨胀、开运算、闭运算。不同的操作有不同的作用,同样的操作在不同类型的图片上也有不同效果,具体效果如下表格所示。要求熟练掌握对二值图像的形态学处理。 不同操作对不同类型图像处理效果 一、对二值图像进行处理 1、结构元素 在开

    2024年02月04日
    浏览(65)
  • 【数字图像处理】实验三 图像分割(MATLAB实现)

    目录 一、实验意义及目的 二、实验内容 三、Matlab 相关函数介绍 四、算法原理 五、参考代码及扩展代码流程图 (1)参考代码流程图 (2)扩展代码流程图 六、参考代码 七、实验要求 (1)尝试不同的阈值选择方法,实现灰度图像二值化 (2)变换参数实现形态学滤波,查看滤波

    2024年02月05日
    浏览(51)
  • 【数字图像处理】实验二 图像增强(MATLAB实现)

    目录 一、实验意义及目的 二、实验内容 三、Matlab 相关函数介绍 四、算法原理 五、参考代码及扩展代码流程图  (1)参考代码流程图 (2)扩展代码流程图 六、参考代码 七、实验要求 (1)对以上处理变换参数,查看处理效果; (2)更改伪彩色增强方法为热金属编码或彩

    2023年04月12日
    浏览(86)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包