nn.Conv2d详解

这篇具有很好参考价值的文章主要介绍了nn.Conv2d详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

nn.Conv2d 是 PyTorch 中的一个卷积层,用于实现二维卷积操作。其主要参数有:

  • in_channels:表示输入图像的通道数,也就是输入特征图的深度。
  • out_channels:表示输出特征图的通道数,也就是卷积核的个数。
  • kernel_size:表示卷积核的大小;可以是一个整数,表示正方形卷积核的边长;也可以是一个二元组,表示矩形卷积核的宽度和高度。
  • stride:表示卷积核的步长;可以是一个整数,表示正方形卷积核的步长;也可以是一个二元组,表示矩形卷积核在横向和纵向的步长。
  • padding:表示在输入图像周围添加的边界值的数量,以控制输出尺寸的大小。可以是一个整数,表示在四周添加相同数量的像素值;也可以是一个二元组,表示在左右、上下分别添加的像素值数量。
  • dilation:表示卷积核中各个元素之间的扩展步长,可以认为是卷积核的细节或稀疏程度,可以用来控制卷积核的超参数大小和感受野的大小。
  • groups:当输入和输出通道数不同时,可以利用 groups 参数将输入通道分组处理,将相邻的k个输入通道与相邻的k个输出通道进行卷积操作,然后将它们叠加在一起产生输出通道。这是一个非常重要的架构设计,可以大大减少模型参数量,减轻模型过拟合的风险。

nn.Conv2d 的使用方法一般如下:

import torch.nn as nn

# 定义卷积层
conv = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)

# 输入数据
x = torch.randn(1, 3, 224, 224)

# 前向计算
out = conv(x)

这里我们定义了一个输入通道数为 3,输出通道数为 32,卷积核大小为 3x3,步长为 1,边界填充数为 1 的卷积层。然后,我们定义了一个大小为 (1, 3, 224, 224) 的输入数据 x,执行前向计算得到输出 out。

注意,对于卷积操作,输入数据一般为四维张量,需要按照 batchsize × 通道数 × 高度 × 宽度的维度排列,这里 x 的大小为 (1, 3, 224, 224) 表示 batchsize 为 1,通道数为 3,输入图像的尺寸为 224x224。文章来源地址https://www.toymoban.com/news/detail-447164.html

到了这里,关于nn.Conv2d详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【知识点】nn.Conv2d参数设置

    reference   in_channels   这个很好理解,就是输入的四维张量[N, C, H, W]中的C了,即输入张量的channels数。这个形参是确定权重等可学习参数的shape所必需的。 out_channels   也很好理解,即期望的四维输出张量的channels数。 kernel_size   卷积核的大小,一般我们会使用5x5、3x3这

    2024年02月12日
    浏览(35)
  • pytorch复现_conv2d

    2024年02月06日
    浏览(43)
  • 在树莓派上实现numpy的conv2d卷积神经网络做图像分类,加载pytorch的模型参数,推理mnist手写数字识别,并使用多进程加速

    这几天又在玩树莓派,先是搞了个物联网,又在尝试在树莓派上搞一些简单的神经网络,这次搞得是卷积识别mnist手写数字识别 训练代码在电脑上,cpu就能训练,很快的: 然后需要自己在dataset里导出一些图片:我保存在了mnist_pi文件夹下,“_”后面的是标签,主要是在pc端导

    2024年02月07日
    浏览(33)
  • pytorch框架:conv1d、conv2d的输入数据维度是什么样的

    Conv1d 的输入数据维度通常是一个三维张量,形状为 (batch_size, in_channels, sequence_length),其中: batch_size 表示当前输入数据的批次大小; in_channels 表示当前输入数据的通道数,对于文本分类任务通常为 1,对于图像分类任务通常为 3(RGB)、1(灰度)等; sequence_length 表示当前输

    2024年01月16日
    浏览(44)
  • 【Pytorch】三维卷积 nn.Conv3d 用法

    nn.Conv3d 是 PyTorch 中实现三维卷积操作的类。 其输入和输出的维度如下: 输入维度: 输入张量的维度应为 (N, C_in, D, H, W) ,其中: N : 批量大小 (batch size),即一批输入数据中包含的样本数量。 C_in : 输入通道数 (number of input channels),即输入数据的通道数量,例如彩色图像通常

    2024年02月05日
    浏览(49)
  • pytorch之nn.Conv1d详解

    1、Conv1d 定义 class torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 自然语言处理中一个句子序列,一维的,所以使用Conv1d,此时卷积核(没有batch_size,参数是共享的)除去chanel,也是一维的。  2、参数  in_channels(int) – 输入信号的通道。在

    2024年02月16日
    浏览(42)
  • 【深度学习】特征图的上采样(nn.Upsample)和转置卷积(nn.ConvTranspose2d) | pytorch

    这次就不废话了,我想赶在10点前回去洗头(现在9.17,还差一篇文章) 该函数有四个参数: 参数的介绍如下: 稍微翻译一下: 参数: 1)size(int或Tuple[int]或Tuple[int,int]或Tupple[int,int,int],可选):输出空间大小 2)scale_factor(float或Tuple[floot]或Tuple[floot,float]或Tuple[floo

    2023年04月08日
    浏览(43)
  • 一维卷积神经网络理解(torch.nn.Conv1d)

    in_channels : (int)输入数据的通道数,即对某条训练数据来说由多少组向量表示。例如对于由一维向量表示的一条数据来说,通道数为1;对于文本数据来说,一个句子是由m个单词组成,那么通道数就可以是m out_channels : (int)卷积产生的通道数,可以理解为卷积核的个数 kernel_siz

    2023年04月08日
    浏览(42)
  • 【nn.Conv3d】三维卷积参数量与运算量

    输入 :一个长度为7帧的RGB视频,单帧通道数为3,视频的宽高为60×40,1个视频故bs=1 -- (1, 3, 7, 60, 40) 3d卷积 :nn.Conv3d(3, 5, (4, 7, 7), stride=1, padding=0) 3代表输入特征图通道数,5代表输出特征图通道数,4和7分别代表3d卷积的通道数和宽高。(此外stride和padding也可以设定为 (a,b,b)

    2024年02月11日
    浏览(33)
  • pytorch中nn.Conv1d功能介绍

            在使用Conv1d函数时,pytorch默认你的数据是一维的,比如一句话“深度学习”可以用一个一维数组 [\\\'深\\\', \\\'度\\\', \\\'学\\\', \\\'习\\\'] 表示,这个数据就是一维的。图片是二维数据,它有长宽两个维度。         因此在使用 Conv1d 函数时,输入是一个三位数组,三个维度分别表

    2024年02月10日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包