案例分享|地弹现象导致DCDC电源芯片工作不正常

这篇具有很好参考价值的文章主要介绍了案例分享|地弹现象导致DCDC电源芯片工作不正常。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

很多读者都应该听过地弹,但是实际遇到的地弹的问题应该很少。本案例就是一个DCDC电源芯片的案例。

1. 问题描述

如下图1 ,产品其中一个供电是12V转3.3V的电路,产品发货50K左右以后,大约有1%的产品无法启动,经过解耦定位,问题出在下图中的电源芯片。

案例分享|地弹现象导致DCDC电源芯片工作不正常

图1 12V 转3.3V电路

2. 原因分析

经过最终的分析,问题最终定位在与PCB的布局和布线有关,其中涉及一个重要容易忽略的技术:地弹。

如下图,左图是芯片内部的原理框图,右图是实际PCB中的布局图,在高频开关电源中,提供能量来源的有两个器件:输入电容Cvin和电感Lbuck;

(1)当高端开关闭合,低端开关断开时,电流的路径如红色箭头所示;

(2)当高端开关断开,低端开关闭合时,电流的路径如蓝色的箭头所示。

案例分享|地弹现象导致DCDC电源芯片工作不正常

图2 芯片内部的高低开关(左图)、实际的工作示意图(右图)

根据电磁感应定理:e=-dФ/dt=-d(Li)/dt=-Ldi/dt,由于红色和蓝色的环路面积变化较大,最终的体现会在低端开关和Cvin之间产生感应电动势。

厂商内部手册中显示,电源芯片满足以下两个的条件,就可以进入测试模式,测试模式下,电源芯片不工作,电源无输出。

(1)pin5 引脚FB 电压大于3V;

(2)pin6引脚COMP电压小于-0.5V;

我们实际设计的PCB示意图如下图所示,环路1由Cvin、高端开关、L、Cbuck、负载组成,环路2由Cbuck、负载组成,环路3由低端开关、L、负载组成。其中环路面积变化A最大,同时电流突变最最迅速,实测引脚6 COMP 最高可达到-0.6V。如果FB引脚耦合的干扰达到3V,是可以将芯片进入到测试模式的,导致无法输出。

案例分享|地弹现象导致DCDC电源芯片工作不正常

图3 较差的布局产生3个环路

案例分享|地弹现象导致DCDC电源芯片工作不正常

图4 较差的布局产生3个环路

3. 解决方案

问题的原因主要时两种开关状态时的环路面积不一样,导致感应电动势变化太大,导致芯片内部的逻辑混乱。重新布局后的措施如下:

(1)将输入电容、高低端开关尽量在同一水平线;

(2)将输出电容和负载尽量靠近用电端,消灭上图中的环路2导致的变化。同时可以应付用电设备的突发电流,突发电流大部分由输出电容供电,而不是通过电源芯片转换而来。

(3)重新布局后的环路面积变化=变化的长度X板厚度。板厚为2mm,此时的面积变化基本可以忽略不计。

案例分享|地弹现象导致DCDC电源芯片工作不正常

图5  优化布局,环路变化基本可以忽略不计

4.  总结

对于DCDC电源芯片,厂商不会对外公布其内部的具体逻辑电路,但是有一点可以肯定,高低开关两种不同的状态导致的环路面积变化,如果没有处理好,产生的地弹会影响内部逻辑,使得进入不确定的工作状态。文章来源地址https://www.toymoban.com/news/detail-447641.html

到了这里,关于案例分享|地弹现象导致DCDC电源芯片工作不正常的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • DCDC电源SW波形负压以及轻载振荡问题

      主要因为死区时间产生的,如图28所示,比较直观,BUCK拓扑结构的时候,经常会认为只有一个管子导通,要不上管,要不下管(CCM连续模式),但是随着DCM模式的使用,芯片认为输出电容存在的能量还未被消耗完。此时,芯片的上管和下管均关闭以实现节能。此时,下管

    2024年02月12日
    浏览(33)
  • DCDC电源SW电压尖峰过冲问题解析

      (示波器正常测试时须关闭20M带宽限制)   ① 器件本身的寄生电感以及寄生电容造成的,主要是电感电容器件的谐振频率。   ② 功率电感自身的参数,如果过冲振荡频率和电感自谐频率相同,基本可以确定为电感自身引起,但过冲振荡频率一般是百兆量级,所以电

    2024年02月07日
    浏览(51)
  • DCDC芯片选型

    一、BUCK芯片选型 最初MP2307特别好用,是由美国MPS公司推出

    2024年02月16日
    浏览(35)
  • 硬件技术:DCDC开关电源实战经验之静态纹波及动态响应调试方法

    对于DC-DC开关电源,在设计阶段需要进行一些电源常规测试,确保电源系统的稳定性和性能可以满足要求,本文主要从原理上分析静态纹波和动态响应时产生的过冲/下冲,并提供一些改善方法。 BPSemi DC-DC -开关电源基本原理- 首先,对DC-DC开关电源的原理进行简单的分析,以

    2024年02月10日
    浏览(38)
  • 【硬件】对电源模块的梳理2.0(含LDO参数详解、DCDC参考设计)

    本篇可参考【硬件】对电源模块的梳理(包括DC-DC、LDO等不同芯片应用电路)一起享用 目录 举例 一、LDO关键的性能参数 1、最小压降(Dropout voltage) 2、输入电压 3、输出电流 4、热阻参数 5、纹波/噪声 6、瞬态响应 7、LDO的电容 8、优秀LDO赏析 二、DC-DC模块设计(12V-5V) 1、开关

    2023年04月08日
    浏览(31)
  • 案例分享-full gc导致k8s pod重启

     在之前的记一次k8s pod频繁重启的优化之旅中分享过对于pod频繁重启的一些案例,最近又遇到一例,继续分享出来希望能给大家带来些许收获。 报警群里突然显示某pod频繁重启,我随即上去查看日志,主要分这么几步:   1.查看pod重启的原因,kubectl descirbe pod 上面的Reason:

    2024年02月02日
    浏览(44)
  • DCDC的工作模式:CCM,DCM,BCM;DCDC的调制模式:PWM,PFM,PSM

    DCDC的工作模式:CCM,DCM,BCM CCM(Continuous Conduction Mode),连续导通模式:在一个开关周期内,电感电流从不会到0。或者说电感从不“复位”,意味着在开关周期内电感磁通从不回到0,功率管闭合时,线圈中还有电流流过。 CCM降压变化器的特点: (1)D限定在小于1,降压变换器

    2024年01月25日
    浏览(30)
  • 痞子衡嵌入式:i.MXRT1xxx系列GPIO提早供电会影响上电时序导致内部DCDC启动失败

    大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是 i.MXRT1xxx系列GPIO提早供电会影响上电时序导致内部DCDC启动失败 。 最近有一个 RW612 产品线的同事在设计一个双 MCU 系统 Demo 时发现,当 RW612 板卡和 RT1060 板卡通过 UART 对接时,如果 RW612 板卡提前上电,

    2024年03月27日
    浏览(41)
  • TLF35584电源管理芯片学习笔记(一)

    稳定的电压供给,共三种电压供给: 供给主芯片uC的电源电压 LDO_uC 供给通信模块的电源电压 LDO_Com 供给ADC高精度的参考电压 Volt_Ref 备用稳压器 LDO_Stby 两个用于传感器供给的追踪器,150mA基准参考电压 Track1 Track2 带有复位功能的独立电压检测块 可配置的串口看门狗和功能性的

    2024年02月14日
    浏览(40)
  • 【电源】开关电源工作原理

    1.开关电源的定义 输入交流电压(AC)经由整流滤波以后可获得一高压的直流电压(DC=1.4AC),此电压接入交换元件当做开关使用在20KHZ~100KHZ的高频状态。这时直流高压会被切割成高频的方波信号,这个方波信号经由功率隔离变压器,在二次侧可以获得事先所设定的电压值,然

    2024年02月21日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包