spark和Mapreduce的对比

这篇具有很好参考价值的文章主要介绍了spark和Mapreduce的对比。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.spark和Mapreduce的简单介绍

MapReduce:MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数式编程语言里借来的,还有从矢量编程语言里借来的特性。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组。

spark:Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AMP lab (加州大学伯克利分校的AMP实验室)所开源的类Hadoop MapReduce的通用并行框架,Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是——Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

2.特点

mr:稳点,但是编程API不灵活、速度慢、只能做离线计算

spark:通用、编程API简洁、快,但是相较于mr没有mr更稳定

3.关于运行环境:

MR运行在YARN上,

spark

local:本地运行
standalone:使用Spark自带的资源管理框架,运行spark的应用
yarn:将spark应用类似mr一样,提交到yarn上运行
mesos:类似yarn的一种资源管理框架

4.MapReduce和Spark的本质区别:

MR只能做离线计算,如果实现复杂计算逻辑,一个MR搞不定,就需要将多个MR按照先后顺序连成一串,一个MR计算完成后会将计算结果写入到HDFS中,下一个MR将上一个MR的输出作为输入,这样就要频繁读写HDFS,网络IO和磁盘IO会成为性能瓶颈。从而导致效率低下。

spark既可以做离线计算,有可以做实时计算,提供了抽象的数据集(RDD、Dataset、DataFrame、DStream)有高度封装的API,算子丰富,并且使用了更先进的DAG有向无环图调度思想,可以对执行计划优化后在执行,并且可以数据可以cache到内存中进行复用。文章来源地址https://www.toymoban.com/news/detail-448020.html

到了这里,关于spark和Mapreduce的对比的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分布式计算MapReduce | Spark实验

    题目1 输入文件为学生成绩信息,包含了必修课与选修课成绩,格式如下: 班级1, 姓名1, 科目1, 必修, 成绩1 br (注: br 为换行符) 班级2, 姓名2, 科目1, 必修, 成绩2 br 班级1, 姓名1, 科目2, 选修, 成绩3 br ………., ………, ………, ………, ……… br 编写两个Hadoop平台上的MapRed

    2024年02月08日
    浏览(57)
  • spark为什么比mapreduce快?

    spark为什么比mapreduce快? 1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的 2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,

    2024年02月21日
    浏览(37)
  • Spark内容分享(十二):Spark 和 MapReduce 的区别及优缺点

    1、Spark处理数据是基于内存的,而MapReduce是基于磁盘处理数据的 MapReduce是将中间结果保存到磁盘中,减少了内存占用,牺牲了计算性能。 Spark是将计算的中间结果保存到内存中,可以反复利用,提高了处理数据的性能。 2、Spark在处理数据时构建了DAG有向无环图,减少了shuf

    2024年01月23日
    浏览(48)
  • 关于Spark和MapReduce,一篇文带你看清楚

     Hadoop是目前应用最为广泛的分布式大数据处理框架,其具备可靠、高效、可伸缩等特点。  Hadoop的核心组件是HDFS、MapReduce。随着处理任务不同,各种组件相继出现,丰富Hadoop生态圈,目前生态圈结构大致如图所示:   根据服务对象和层次分为:数据来源层、数据传输层、数

    2024年03月17日
    浏览(40)
  • 大数据:Hadoop基础常识hive,hbase,MapReduce,Spark

    Hadoop是根据Google三大论文为基础研发的,Google 三大论文分别是: MapReduce、 GFS和BigTable。 Hadoop的核心是两个部分: 一、分布式存储(HDFS,Hadoop Distributed File System)。 二、分布式计算(MapReduce)。 MapReduce MapReduce是“ 任务的分解与结果的汇总”。 Map把数据切分——分布式存放

    2024年04月25日
    浏览(54)
  • Hadoop/HDFS/MapReduce/Spark/HBase重要知识点整理

    本复习提纲主要参考北京大学计算机学院研究生课程《网络大数据管理与应用》课程资料以及厦门大学计算机科学系研究生课程 《大数据技术基础》相关材料整理而成,供广大网友学习参考,如有版权问题请联系作者删除:guanmeige001@pku.edu.cn Hadoop简介 Hadoop的功能和作用: 高

    2024年02月02日
    浏览(59)
  • Hive312的计算引擎由MapReduce(默认)改为Spark(亲测有效)

    一、Hive引擎包括:默认MR、tez、spark 在低版本的hive中,只有两种计算引擎mr, tez 在高版本的hive中,有三种计算引擎mr, spark, tez 二、Hive on Spark和Spark on Hive的区别 Hive on Spark:Hive既存储元数据又负责SQL的解析,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。 Spark o

    2024年02月02日
    浏览(40)
  • 大数据面试题:Spark和MapReduce之间的区别?各自优缺点?

    面试题来源: 《大数据面试题 V4.0》 大数据面试题V3.0,523道题,679页,46w字 可回答: 1)spark和maprecude的对比;2)mapreduce与spark优劣好处 问过的一些公司:阿里云(2022.10),银联(2022.10),携程(2022.09),vivo(2022.09),滴滴(2022.09)(2020.09),网易云音乐(2022.09),快手(2022.08),字节(20

    2024年02月03日
    浏览(42)
  • 一百零六、Hive312的计算引擎由MapReduce(默认)改为Spark(亲测有效)

    一、Hive引擎包括:默认MR、tez、spark 在低版本的hive中,只有两种计算引擎mr, tez 在高版本的hive中,有三种计算引擎mr, spark, tez 二、Hive on Spark和Spark on Hive的区别 Hive on Spark:Hive既存储元数据又负责SQL的解析,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。 Spark o

    2024年02月05日
    浏览(45)
  • 27-spark各版本对比

    一、spark1.x (1)引入内存计算的理念解决中间结果落盘导致的效率低下。早期官网中给出数据,在理想状况下,性能可达到MR的100倍 (2)支持丰富的API,支持多种编程语言,如python、scala、java、R等,代码量减少5倍以上,并且受众群体更广 (3)提供一站式的解决方案,同时

    2024年02月07日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包