矩阵初等变换整理

这篇具有很好参考价值的文章主要介绍了矩阵初等变换整理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概念

左乘行变换,右乘列变换
有三种初等矩阵:

  • E i j E_{ij} Eij 的一般形式: 先写出 E,然后直接对调i,j行即可
    • E i j E_{ij} Eij 在左,则对调矩阵的行
    • E i j E_{ij} Eij 在右,则对调矩阵的列
  • E i j ( k ) E_{ij}(k) Eij(k) 的一般形式: 先写出E,然后将第j行i列元素改成 k
    • E i j ( k ) E_{ij}(k) Eij(k) 在左: E 的第 i 行的 k 倍加到 j 行上
    • E i j ( k ) E_{ij}(k) Eij(k) 在左: E 的第 j 列的 k 倍加到 i 列上
  • E i ( k ) E_{i}(k) Ei(k) 的一般形式: 先写出E,然后第i行对角线上的元素改成 k
    • E i ( k ) E_{i}(k) Ei(k) 在左,第i行*k倍
    • E i ( k ) E_{i}(k) Ei(k) 在右,第i列*k倍

第一和三种好理解,第二种不好理解,需要结合案例
E为3阶矩阵,第1列的1倍加到第2列: A E 21 ( 1 ) AE_{21}(1) AE21(1)
矩阵初等变换整理
E为3阶矩阵,第3行的3倍加到第1行: E 31 ( 3 ) A E_{31}(3)A E31(3)A
矩阵初等变换整理

运算性质

矩阵初等变换整理文章来源地址https://www.toymoban.com/news/detail-449015.html

到了这里,关于矩阵初等变换整理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 分块矩阵的初等变换

            众所周知,线性代数是一门严谨却又不那么严谨的学科,我们常常从原始定义中得到高度抽象的结果,偶尔还能得到一些玄学结论。本人在学习线代课程时,无意中生发了这样一种想法:分块矩阵也可以进行初等变换吗?         我在计算分块行列式如 时,无

    2024年02月11日
    浏览(35)
  • 矩阵理论复习部分——线性代数(3)初等变换、逆矩阵

    一、初等变换3种方式 对调矩阵的两行(两列); 以 k ≠ 0 k not = 0 k  = 0 乘某一行(列)所有元素; 某一行(列)元素 k k k 倍加到另一行(列); 二、初等矩阵 初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。 左乘初等矩阵 = 行变换 右乘初等矩阵 = 列变换 初等矩

    2024年02月04日
    浏览(57)
  • 第三章,矩阵,07-用初等变换求逆矩阵、矩阵的LU分解

    玩转线性代数(19)初等矩阵与初等变换的相关应用的笔记,例见原文 已知: A r ∼ F A^r sim F A r ∼ F ,求可逆阵 P P P ,使 P A = F PA = F P A = F ( F F F 为 A A A 的行最简形) 方法:利用初等行变换,将矩阵A左边所乘初等矩阵相乘,从而得到可逆矩阵P. 步骤: (1)对矩阵A进行l次初等

    2024年02月13日
    浏览(43)
  • 高等代数(八)-线性变换02:λ-矩阵在初等变换下的标准形

    § 2 λ § 2 lambda §2 λ -矩阵在初等变换下的标准形 λ lambda λ -矩阵也可以有初等变换. 定义 3 下面的三种变换叫做 λ lambda λ -矩阵的初等变换: 矩阵的两行 (列) 互换位置; 矩阵的某一行 (列) 乘非零常数 c c c ; 矩阵的某一行 (列) 加另一行 (列) 的 φ ( λ ) varphi(lambda) φ ( λ ) 倍

    2024年02月19日
    浏览(45)
  • 高等代数(四)-矩阵07:分块乘法的初等变换及应用举例

    § 7 § 7 §7 分块乘法的初等变换及应用举例 将分块乘法与初等变换结合是矩阵运算中极重要的手段. 现将某个单位矩阵进行如下分块: ( E m O O E n ) . left(begin{array}{cc} boldsymbol{E}_{m} boldsymbol{O} \\\\ boldsymbol{O} boldsymbol{E}_{n} end{array}right) . ( E m ​ O ​ O E n ​ ​ ) . 对它进行两行

    2024年02月22日
    浏览(36)
  • 如何理解“对矩阵进行初等行变换不改变其列向量的线性关系”?

    一. 对矩阵进行初等行变换不改变其列向量的线性关系 对矩阵A进行初等行变换相当于左乘一个可逆矩阵P。 把A看作是列向量组,若有Ax=0,则其中的x就说明了列向量的线性关系: [ α 1 , α 2 , α 3 ] [ x 1 x 2 x 3 ] = [ 0 ] left[ alpha_1 ,alpha_2, alpha_3 right] begin{bmatrix} x_1\\\\ x_2\\\\ x_3 e

    2024年02月12日
    浏览(40)
  • 线性代数中涉及到的matlab命令-第三章:矩阵的初等变换及线性方程组

    目录 1,矩阵的初等变换 1.1,初等变换 1.2,增广矩阵  ​1.3,定义和性质 1.4,行阶梯型矩阵、行最简型矩阵 1.5,标准形矩阵  1.6,矩阵初等变换的性质  2,矩阵的秩  3,线性方程组的解  初等变换包括三种:交换行或列、某行或列乘以一个非零系数、某行或列加上零一行

    2024年02月04日
    浏览(50)
  • 初等变换和广义初等变换——要点部分

    第 i i i 行和第 j j j 行互换: E i j E_{ij} E ij ​ 第 i i i 列和第 j j j 列互换: E i j E_{ij} E ij ​ 【例】第 1 1 1 行和第 2 2 2 行互换,或第 1 1 1 列和第 2 2 2 列互换: E 12 = [ 0 1 0 1 0 0 0 0 1 ] E_{12}=left[ begin{matrix} 0 1 0 \\\\ 1 0 0 \\\\ 0 0 1end{matrix} right] E 12 ​ = ​ 0 1 0 ​ 1 0 0 ​ 0 0 1 ​ ​

    2024年02月12日
    浏览(82)
  • 线性代数拾遗(2)—— 何时用初等行变换,何时用初等列变换?

    初等行、列变换可以混用 求矩阵/向量组的秩 :初等变化不改变矩阵的秩(求向量组的秩也是先排成矩阵然后求矩阵的秩) 矩阵化行阶梯型矩阵(用来求秩) :同上 矩阵化为等价标准形 :根据定义,化标准形时要同时左乘和右乘可逆矩阵,相当于初等行列变换都做了 求行

    2024年02月05日
    浏览(41)
  • 线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念

    目录 1 什么是特征值和特征向量? 1.1 特征值和特征向量这2个概念先放后 1.2 直观定义 1.3 严格定义 2 如何求特征值和特征向量 2.1 方法1:结合图形看,直观方法求 2.1.1 单位矩阵的特征值和特征向量 2.1.2 旋转矩阵 2.2  根据严格定义的公式 A*X=λ*X 来求 2.3  特征方程 2.4 互异特

    2024年02月09日
    浏览(66)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包