快速玩转Yolov5目标检测—没有好的显卡也能玩(二)

这篇具有很好参考价值的文章主要介绍了快速玩转Yolov5目标检测—没有好的显卡也能玩(二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        上篇  快速玩转Yolov5目标检测—没有好的显卡也能玩(一) 已经将YoloV5在我的笔记本电脑上快速跑起来了,因为电脑显卡一般,所以运行的CPU版本,从推理结果来看,耗时还是蛮高的,如下图,平均每帧0.45秒左右:

快速玩转Yolov5目标检测—没有好的显卡也能玩(二)

理论上这已经能满足很多场景下的需求了,比如明火报警、不带安全帽报警等等,不过还是想试下在GPU下的推理表现,并且后面还想继续玩下训练自己的检测模型。

下面就详细说说整个躺坑的过程,过程中也让我找到了一种在手头没有好的显卡的情况下如何能够比较快速低成本得到好显卡的方法。

一、先了解了下显卡的基本知识  

快速玩转Yolov5目标检测—没有好的显卡也能玩(二)

快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

破产之选:GTX 1050TI(4GB),我的显卡:NVIDIA NVS 5400M  600MHz  2GB,看来已经严重过时了-_-。

 二、在我的笔记本上尝试下GPU版本

        NVS 5400M 好在还支持CUDA的,就算无法满足训练的需求,能加速下推理速度也是不错的,所以还是决定试一下。

1.进入YoloV5虚拟环境,安装GPU版本的 pytorch 

conda activate yolov5   #进入yolov5虚拟环境
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch  #安装GPU版pytorch

运气不错一次安装成功:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

 2.查看GPU 是否可用 

python
import torch
torch.cuda.is_available()

执行第二步时报错:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

 按照提示调整了系统的虚拟内存配置:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

 继续运行提示GPU不可用:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

按照这个提示应该要不显卡驱动过低(或不兼容),要不就是显卡硬件不兼容,尝试更新驱动程序等方法后问题依旧,看来这条路暂时走不通了,得考虑其他的方法了。

三、低成本快速用上好的显卡

       上文我们说到运行深度学习建议最低的显卡: GTX 1050TI ,从京东上来看至少¥1500+了,加上其他硬件只为了测试一下YoloV5 采购一台PC成本有点高。

       至此此事暂时无解搁置了几天,一次无意中了解到,原来可以购买远程的GPU云服务器,立马开始研究,对比了几家云服务器厂家,最终决定使用腾讯云的GPU服务器,主要原因:便宜!

1.进入腾讯云,新建服务器实例,选择“按量计费”,地区可选择“广州”,“上海”或者“成都”,我选择的“成都”:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

2.在机型列选择“GPU机型”,在下方就可以看到有比较便宜的按小时计费的GPU服务器:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

最便宜的3元多,还有7元多的,不论是显卡,CPU还是内存整体配置还是非常不错的,几块钱1个小时的费用从测试的需求来讲相比购买同等配置的物理PC算是非常便宜了。

3.这里需要注意了,我购买的是7.8元的这台服务器(1颗NVIDIA T4),3元的服务器(1/4 颗 NVIDIA T4)无论怎么尝试都无法启用pytorch的GPU模式,猜测很可能是因为共享了同颗GPU导致的。
下面的操作系统选择windows2019,磁盘空间150GB,宽带按量计费:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

连上服务器,终于见到了大名鼎鼎的
NVIDIA TESLA T4 深度学习显卡了:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

4.跟之前的方法一样搭建起YoloV5 GPU的运行环境。

5.验证GPU,成功!

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

6.运行推理:

python detect.py --weights="weights/yolov5s.pt" --source  http://live1.wuhubtv.com/channel1/sd/live.m3u8

启动成功,显卡型号和显存:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

可以看到平均推理耗时已经低于0.01秒了: 

   

 CPU占用:

 快速玩转Yolov5目标检测—没有好的显卡也能玩(二) 

 总结:

        至此,通过采用云GPU服务器的方式快速低成本的用上了高性能的显卡,而且这个方案可以根据项目的实际情况动态扩容或缩减硬件配置,在项目规模不大,这个方案是比较不错的选择。

       另外,记得用完服务器后及时销毁服务器!

       下一篇我们继续聊聊如何训练自己的目标检测模型!文章来源地址https://www.toymoban.com/news/detail-449291.html

到了这里,关于快速玩转Yolov5目标检测—没有好的显卡也能玩(二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【目标检测】yolov5模型详解

    yolov5于2020年由glenn-jocher首次提出,直至今日yolov5仍然在不断进行升级迭代。 Yolov5有YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四个版本。文件中,这几个模型的结构基本一样,不同的是depth_multiple模型深度和width_multiple模型宽度这两个参数。 yolov5主要分为以下几部分: Input:输入 Backbone:

    2024年02月07日
    浏览(47)
  • 【目标检测】yolov5代码实战

    YOLO 是 “You only look once” 缩写 , 是将图像划分为网格系统的对象检测算法,网格中的每个单元负责检测自身内的对象。 由于其速度和准确性,YOLO是最著名的目标检测算法之一。yolov5作为YOLO系列第五个迭代版本,它的一个特点就是权重文件非常之小,可以搭载在配置更低的移

    2024年02月07日
    浏览(43)
  • 利用yolov5进行目标检测,并将检测到的目标裁剪出来

    写在前面:关于yolov5的调试运行在这里不做过多赘述,有关yolov5的调试运行请看: https://www.bilibili.com/video/BV1tf4y1t7ru/spm_id_from=333.999.0.0vd_source=043dc71f3eaf6a0ccb6dada9dbd8be37 本文章主要讲解的是裁剪。 需求:识别图片中的人物并将其裁剪出来 如果只需识别人物的话,那么只需在y

    2024年02月02日
    浏览(39)
  • 目标检测YOLOV5 添加计数功能

    YOLOV5预测完图片想显示个数怎么办呢? 一行代码轻松解决!!!! 原来的Detect 没有计数功能 只需在源码 上加上下面这一段代码即可: 这样就可以加上计数功能了!!!!  

    2024年02月16日
    浏览(45)
  • 【目标检测】YOLOv5:模型构建解析

    最近在看一些目标检测的最新论文和代码,大多数都是在YOLOv5的基础上进行魔改。 改的最多的基本是原版本的网络结构,这篇博文就从源码角度来解析YOLOv5中,模型是如何构建出来的。 本文使用的是YOLOv5-5.0版本。 在YOLOv5中,模型结构基本是写在了 .yaml 中,5.0版本的YOLOv5共

    2024年02月06日
    浏览(86)
  • yolov5检测小目标(附源码)

    6.30 更新切割后的小图片的label数据处理 前言 yolov5大家都熟悉,通用性很强,但针对一些小目标检测的效果很差。 YOLOv5算法在训练模型的过程中,默认设置的图片大小为640x640像素(img-size),为了检测小目标时,如果只是简单地将img-size改为4000*4000大小,那么所需要的内存会变

    2024年02月03日
    浏览(41)
  • OpenCV之YOLOv5目标检测

    💂 个人主页: 风间琉璃 🤟 版权:  本文由【风间琉璃】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助、 欢迎关注、 点赞、 收藏(一键三连) 和 订阅专栏 哦 目录 前言 一、YOLOv5简介 二、预处理 1.获取分类名 2.获取输出层名称 3.图像尺度变换 三、模型加载

    2024年01月20日
    浏览(49)
  • YOLOv5增加小目标检测层

    采用增加小目标检测层的方式来使YOLOv5能够检测小目标,只需要修改models下的yaml文件中的内容即可。 主要改变如下: 原yaml: 改变后的yaml: 主要改变了两个地方:anchors和head (1)anchors (2)head 这样就改好了。 注释:在yolov5的6.0版本作者将CSP换为C3,YOLOv5 2020年5月出来后不

    2024年02月11日
    浏览(45)
  • 深度学习基础——YOLOv5目标检测

            YOLO系列算法属于基于回归的单阶段目标检测算法,它将定位与分类两个任务整合成一个任务,直接通过CNN网络提取全局信息并预测图片上的目标。给目标检测算法提供了新的解决方案,并且图片检测速度准确率与召回率达到实时检测的要求。其中YOLOv1、YOLO2、YO

    2024年02月22日
    浏览(42)
  • yolov5旋转目标检测遥感图像检测-无人机旋转目标检测(代码和原理)

    YOLOv5(You Only Look Once version 5)是一个流行且高效的实时目标检测深度学习模型,最初设计用于处理图像中的水平矩形边界框目标。然而,对于旋转目标检测,通常需要对原始YOLOv5架构进行扩展或修改,以便能够检测具有任意角度的对象,比如倾斜的车牌、风力发电机叶片或者

    2024年04月14日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包