对比学习MoCo损失函数infoNCE理解(附代码)

这篇具有很好参考价值的文章主要介绍了对比学习MoCo损失函数infoNCE理解(附代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

对比学习MoCo损失函数infoNCE理解(附代码)

 MoCo loss计算采用的损失函数是InfoNCE: ​​

对比学习MoCo损失函数infoNCE理解(附代码)

下面是MoCo的伪代码,MoCo这个loss的实现就是基于cross entropy loss。

对比学习MoCo损失函数infoNCE理解(附代码)

将k作为q的正样本,因为k与q是来自同一张图像的不同视图;将queue作为q的负样本,因为queue中含有大量不同图像的视图。

在具体python代码中(在/moco/builder.py和/main_moco.py)的实现如下:

对比学习MoCo损失函数infoNCE理解(附代码)

对比学习MoCo损失函数infoNCE理解(附代码)

(1)首先计算正样本损失l_pos, 大小为(N, 1)。

l_pos = torch.einsum('nc,nc->n', [q, k]).unsqueeze(-1)

再计算负样本损失l_neg, 大小为(N, K)。

l_neg = torch.einsum('nc,ck->nk', [q, self.queue.clone().detach()])

(2)将l_pos和l_neg进行cat操作,并除以温度参数temperature(控制concentration level of distribution),得到logits, 大小为(N, 1+K)。

# logits: Nx(1+K)
logits = torch.cat([l_pos, l_neg], dim=1)

# apply temperature
logits /= self.T

目标是正样本都为1,负样本都为0。

(3)那么可以把logits看做分类,分成1+K个类别,期望都是第一个类别,则可以把labels设为0(为什么呢?)

# labels: positive key indicators
labels = torch.zeros(logits.shape[0], dtype=torch.long).cuda()

(4)最后函数返回,再使用nn.CrossEntropyLoss计算损失函数。

criterion = nn.CrossEntropyLoss().cuda(args.gpu)
# ...
loss = criterion(output, target)

前面提到的可以把labels设为0(为什么呢?)

我们可以结合nn.CrossEntropyLoss详解_Lucinda6的博客-CSDN博客_nn.crossentropyloss()和https://www.cnblogs.com/marsggbo/p/10401215.html 理解一下。

交叉熵的计算公式为:

对比学习MoCo损失函数infoNCE理解(附代码)

其中p表示真实值,在这个公式中是one-hot形式;q是预测值,在这里假设已经是经过softmax后的结果了。

下面详细分析一下nn.CrossEntropyLoss。

仔细观察上面的交叉熵的计算公式可以知道,因为p的元素不是0就是1,而且又是乘法,所以很自然地我们如果知道1所对应的index,那么就不用做其他无意义的运算了。所以在pytorch代码中target不是以one-hot形式表示的,而是直接用scalar表示。所以交叉熵的公式(m表示真实类别)可变形为:

对比学习MoCo损失函数infoNCE理解(附代码)

仔细看看,是不是就是等同于log_softmaxnll_loss两个步骤。

对比学习MoCo损失函数infoNCE理解(附代码)

所以Pytorch中的F.cross_entropy会自动调用上面介绍的log_softmaxnll_loss来计算交叉熵,其计算方式如下:

对比学习MoCo损失函数infoNCE理解(附代码)


参考文章:

自监督学习MOCO算法解析 - 知乎

对比学习损失(InfoNCE loss)与交叉熵损失的联系,以及温度系数的作用 - 知乎

nn.CrossEntropyLoss详解_Lucinda6的博客-CSDN博客_nn.crossentropyloss()

https://www.cnblogs.com/marsggbo/p/10401215.html

nn.Softmax_harry_tea的博客-CSDN博客_nn.softmax

torch.einsum详解 - 知乎文章来源地址https://www.toymoban.com/news/detail-449375.html

到了这里,关于对比学习MoCo损失函数infoNCE理解(附代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Pytorch】从MoCo看无监督对比学习;从SupCon看有监督对比学习

    以下内容全部来自于:自监督学习-MoCo-论文笔记. 侵删 论文:Momentum Contrast for Unsupervised Visual Representation Learning CVPR 2020 最佳论文提名 用动量对比学习的方法做无监督的表征学习任务。 动量的理解即是指数移动平均(EMA),公式理解: moco中利用动量来缓慢的更新编码器,这

    2024年02月21日
    浏览(50)
  • 论文代码学习—HiFi-GAN(3)——模型损失函数loss解析

    这里翻译了HiFi-GAN这篇论文的具体内容,具体链接。 这篇文章还是学到了很多东西,从整体上说,学到了生成对抗网络的构建思路,包括生成器和鉴定器。细化到具体实现的细节,如何 实现对于特定周期的数据处理?在细化,膨胀卷积是如何实现的?这些通过文章,仅仅是了

    2024年02月14日
    浏览(91)
  • 【计算机视觉】对比学习综述(自己的一些理解)

    对比loss 对比学习的 loss(InfoNCE)即以最 大化互信息为目标推导而来。其核心是通过计算样本表示间的距离,拉近正样本, 拉远负样本,因而训练得到的模型能够区分正负例。 具体做法为:对一个 batch 输入的图片,随机用不同的数据增强方法生成两个 view,对他们用相同的

    2024年02月12日
    浏览(48)
  • 深度学习与计算机视觉教程(3) | 损失函数与最优化(CV通关指南·完结)

    在上一篇 深度学习与计算机视觉教程(2) - 图像分类与机器学习基础 内容中,我们对线性分类器做了一些介绍,我们希望线性分类器能够准确地对图像进行分类,要有一套优化其权重参数的方法,这就是本篇ShowMeAI要给大家介绍到的损失函数与最优化相关的知识。 损失函数 数

    2024年02月20日
    浏览(42)
  • Python 华为面试手撕代码 + 八股文,机器学习参数调节,损失函数,激活函数,线程、进程和协程

    一、手撕代码:力扣原题905 二、八股文部分:有点紧张,忘了好多东西 1.深度学习模型优化的方法有哪些? 深度学习模型的优化策略包括以下几个方面: (1)选择合适的激活函数:激活函数对模型的表达能力和收敛速度有很大影响,常用的激活函数包括ReLU、Sigmoid、Tanh等。

    2024年02月09日
    浏览(44)
  • 损失函数的理解

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 如果有人问你现在有多幸福,你会如何回答呢?一般的人可能会给出诸如“还可以吧”或者“不是那么幸福”等笼统的回答。如果有人回答“我现在的幸福指数是10.23”的话,可能会把人吓一跳吧。因为他

    2024年02月06日
    浏览(31)
  • 李沐论文精读系列三:MoCo、对比学习综述(MoCov1/v2/v3、SimCLR v1/v2、DINO等)

    传送门: 李沐论文精读系列一: ResNet、Transformer、GAN、BERT 李沐论文精读系列二:Vision Transformer、MAE、Swin-Transformer 李沐论文精读系列四:CLIP和改进工作串讲(LSeg、GroupViT、VLiD、 GLIPv1、 GLIPv2、CLIPasso) 1.1 导言 参考: 论文:Momentum Contrast for Unsupervised Visual Representation Learni

    2024年02月04日
    浏览(54)
  • 【自监督学习合集】一:moco代码精读

    本人刚入门自监督学习,对自监督学习的了解还停留在理论阶段,现在想为自己开一个坑,即这个自监督学习代码阅读合集,一方面可以加深自己的理解,另一方面也希望能帮助到与我一样的初学者,有什么不对的地方还希望大家不吝指教。 在说moco之前,要知道何为对比学

    2023年04月08日
    浏览(46)
  • 人工智能基础_机器学习007_高斯分布_概率计算_最小二乘法推导_得出损失函数---人工智能工作笔记0047

    这个不分也是挺难的,但是之前有详细的,解释了,之前的文章中有, 那么这里会简单提一下,然后,继续向下学习 首先我们要知道高斯分布,也就是,正太分布, 这个可以预测x在多少的时候,概率最大 要知道在概率分布这个,高斯分布公式中,u代表平均值,然后西格玛代表标准差,知道了

    2024年02月07日
    浏览(74)
  • 人工智能_机器学习065_SVM支持向量机KKT条件_深度理解KKT条件下的损失函数求解过程_公式详细推导_---人工智能工作笔记0105

    之前我们已经说了KKT条件,其实就是用来解决 如何实现对,不等式条件下的,目标函数的求解问题,之前我们说的拉格朗日乘数法,是用来对 等式条件下的目标函数进行求解. KKT条件是这样做的,添加了一个阿尔法平方对吧,这个阿尔法平方肯定是大于0的,那么 可以结合下面的文章去

    2024年02月04日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包