详解数据库的锁机制及原理

这篇具有很好参考价值的文章主要介绍了详解数据库的锁机制及原理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.数据库锁的分类

本图源自CSDN博主:Stephen.W

详解数据库的锁机制及原理

数据库锁一般可以分为两类,一个是悲观锁,一个是乐观锁

乐观锁一般是指用户自己实现的一种锁机制,假设认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做。乐观锁的实现方式一般包括使用版本号和时间戳 (也就是在数据库中添加了版本号和时间戳字段,以便检测)

悲观锁一般就是我们通常说的数据库锁机制,以下讨论都是基于悲观锁

悲观锁主要表锁、行锁、页锁。在MyISAM中只用到表锁,不会有死锁的问题,锁的开销也很小,但是相应的并发能力很差。innodb实现了行级锁和表锁,锁的粒度变小了,并发能力变强,但是相应的锁的开销变大,很有可能出现死锁。同时innodb需要协调这两种锁,算法也变得复杂。InnoDB行锁是通过给索引上的索引项加锁来实现的,只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁

表锁和行锁都分为共享锁和排他锁,而更新锁是为了解决行锁升级(共享锁升级为独占锁)的死锁问题

innodb中表锁和行锁一起用,所以为了提高效率才会有意向锁 (意向共享锁和意向排他锁)


2.行锁

共享锁(读锁S锁)

共享锁允许其他事务读,但是不允许写😥

加锁与解锁: 当一个事务执行select语句时,数据库系统会为这个事务分配一把共享锁,来锁定被查询的数据。在默认情况下,数据被读取后,数据库系统立即解除共享锁。例如,当一个事务执行查询“SELECT * FROM accounts”语句时,数据库系统首先锁定第一行,读取之后,解除对第一行的锁定,然后锁定第二行。这样,在一个事务读操作过程中,允许其他事务同时更新accounts表中未锁定的行。

兼容性: 如果数据资源上放置了共享锁,还能再放置共享锁和更新锁

并发性能: 具有良好的并发性能,当数据被放置共享锁后,还可以再放置共享锁或更新锁。所以并发性能很好。

排他锁(写锁X锁)

排他锁不允许其他事务读和写😮

加锁与解锁: 当一个事务执行insert、update或delete语句时,数据库系统会自动对SQL语句操纵的数据资源使用独占锁(即排他锁)

兼容性: 独占锁不能和其他锁兼容,如果数据资源上已经加了独占锁,就不能再放置其他的锁了。同样,如果数据资源上已经放置了其他锁,那么也就不能再放置独占锁了

并发性能: 最差。只允许一个事务访问锁定的数据,如果其他事务也需要访问该数据,就必须等待

更新锁

更新锁在的初始化阶段用来锁定可能要被修改的资源,这可以避免使用共享锁造成的死锁现象。例如,对于以下的update语句:

UPDATE accounts SET balance=900 WHERE id=1

更新操作需要分两步:读取accounts表中id为1的记录 –> 执行更新操作

那么什么情况下会造成死锁现象呢:

如果在第一步使用共享锁,再第二步把锁升级为独占锁,就可能出现死锁现象。例如:两个事务都获取了同一数据资源的共享锁,然后都要把锁升级为独占锁,但需要等待另一个事务解除共享锁才能升级为独占锁,这就造成了死锁🤐

更新锁有如下特征:

加锁与解锁: 当一个事务执行update语句时,数据库系统会先为事务分配一把更新锁。当读取数据完毕,执行更新操作时,会把更新锁升级为独占锁

兼容性: 更新锁与共享锁是兼容的,也就是说,一个资源可以同时放置更新锁和共享锁,但是最多放置一把更新锁。这样,当多个事务更新相同的数据时,只有一个事务能获得更新锁,然后再把更新锁升级为独占锁,其他事务必须等到前一个事务结束后,才能获取得更新锁,这就避免了死锁

并发性能: 允许多个事务同时读锁定的资源,但不允许其他事务修改它


3.意向锁(IX/IS锁)

innodb中表锁和行锁一起用,所以为了提高效率才会有意向锁(意向共享锁和意向排他锁)

  • 在mysql中有表锁,读锁锁表,会阻塞其他事务写表数据。写锁锁表,会阻塞其他事务读和写表数据
  • Innodb引擎又支持行锁,行锁分为共享锁,一个事务对一行的共享只读锁。排它锁,一个事务对一行的排他读写锁
  • 这两中类型的锁共存的问题考虑这个例子:事务A锁住了表中的一行,让这一行只能读,不能写。之后,事务B申请整个表的写锁。如果事务B申请成功,那么理论上它就能修改表中的任意一行,这与A持有的行锁是冲突的。数据库需要避免这种冲突,就是说要让B的申请被阻塞,直到A释放了行锁

数据库要怎么判断这个冲突呢?

  • 判断表是否已被其他事务用表锁锁表
  • 判断表中的每一行是否已被行锁锁住

判断表中的每一行是否已被行锁锁住。这样的判断方法效率实在不高,因为需要遍历整个表。于是就有了意向锁。在意向锁存在的情况下,事务A必须先申请表的意向共享锁,成功后再申请一行的行锁😏

在意向锁存在的情况下,上面的判断可以改成

  • 判断表是否已被其他事务用表锁锁表
  • 发现表上有意向共享锁,说明表中有些行被共享行锁锁住了,因此,事务B申请表的写锁会被阻塞

申请意向锁的动作是数据库完成的,就是说,事务A申请一行的行锁的时候,数据库会自动先开始申请表的意向锁,不需要我们程序员使用代码来申请😣


4.锁机制解释数据库隔离级别

每一种隔离级别满足不同的数据要求,使用不同程度的锁。

  • Read Uncommitted,读写均不使用锁,数据的一致性最差,也会出现许多逻辑错误。
  • Read Committed,使用写锁,但是读会出现不一致,不可重复读。
  • Repeatable Read, 使用读锁和写锁,解决不可重复读的问题,但会有幻读。
  • Serializable, 使用事务串形化调度,避免出现因为插入数据没法加锁导致的不一致的情况。

读未提交,造成脏读(Read Uncommitted)

一个事务中的读操作可能读到另一个事务中未提交修改的数据,如果事务发生回滚就可能造成错误。

例子:A打100块给B,B看账户,这是两个操作,针对同一个数据库,两个事物,如果B读到了A事务中的100块,认为钱打过来了,但是A的事务最后回滚了,造成损失。

避免这些事情的发生就需要我们在写操作的时候加锁,使读写分离,保证读数据的时候,数据不被修改,写数据的时候,数据不被读取。从而保证写的同时不能被另个事务写和读。

读已提交(Read Committed)

我们加了写锁,就可以保证不出现脏读,也就是保证读的都是提交之后的数据,但是会造成不可重读,即读的时候不加锁,一个读的事务过程中,如果读取数据两次,在两次之间有写事务修改了数据,将会导致两次读取的结果不一致,从而导致逻辑错误。

可重复读(Repeatable Read)

解决不可重复读问题,一个事务中如果有多次读取操作,读取结果需要一致(指的是固定一条数据的一致,幻读指的是查询出的数量不一致,即不可重复读对应的是update语句,但是解决不掉insert语句导致的幻读问题!)

所以读锁在事务中持有可以保证不出现不可重复读,写的时候必须加锁且持有,这是必须的了,不然就会出现脏读。Repeatable Read(可重读)也是MySql的默认事务隔离级别

串行化(Serializable)

解决幻读问题,在同一个事务中,同一个查询多次返回的结果不一致。事务A新增了一条记录,事务B在事务A提交前后各执行了一次查询操作,发现后一次比前一次多了一条记录。幻读是由于并发事务增加记录导致的,这个不能像不可重复读通过记录加锁解决,因为对于新增的记录根本无法加锁。需要将事务串行化,才能避免幻读。

这是最高的隔离级别,它通过强制事务排序,使之不可能相互冲突,从而解决幻读问题。简言之,它是在每个读的数据行上加上共享锁。在这个级别,可能导致大量的超时现象和锁竞争


5.元数据锁(MDL锁)

MySQL5.5引入了meta data lock,简称MDL锁,属于表锁范畴。MDL的作用是,保证读写的正确性。比如,如果一个查询正在遍历一个表中的数据,而执行期间另一个线程对这个表结构做变更,增加了一列,那么查询线程拿到的结果跟表结构对不上,肯定是不行的。

因此,当对一个表做增删改查操作的时候,加MDL读锁;当要对表做结构变更操作的时候,加MDL写锁

例子:开启一个事务,进行查询表操作,暂不提交事务:(默认加了一个MDL读锁)

详解数据库的锁机制及原理

之后在新事务中尝试修改表结构,进入阻塞状态:(无法再添加DML写锁,存在互斥!)

详解数据库的锁机制及原理


6.间隙锁

行锁只能锁住行,不能完全解决幻读问题,新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB只好引入新的锁,也就是间隙锁

RR隔离级别下为了解决“幻读”问题:“快照读”依靠MVCC控制,“当前读”通过间隙锁解决😌

接下来我们用一个案例来解释一下间隙锁:

详解数据库的锁机制及原理

图中id值为8的记录加了gap锁,意味着不允许别的事务在id值为8的记录前边的间隙插入新记录,其实就是id列的值(3,8)这个区间的新记录是不允许立即插入的。比如,有另外一个事务再想插入一条id值为4的新记录,它定位到该条新记录的下一条记录的id值为8,而这条记录上又有一个gap锁,所以就会阻塞插入操作,直到拥有这个gap锁的事务提交了之后,id列的值在区间(3,8)中的新记录才可以被插入。

gap锁的提出仅仅是为了防止插入幻影记录而提出的。虽然有共享gap锁和独占gap锁这样的说法,但是它们起到的作用是相同的。而且如果对一条记录加了gap锁(不论是共享gap锁还是独占gap锁),并不会限制其他事务对这条记录加记录锁或者继续加gap锁。

间隙锁与间隙锁之间是不存在冲突的(可以共存),冲突的是往间隙里插入一条记录!(不许插入)😛


7.临键锁

有时候我们既想锁住某条记录,又想阻止其他事务在该记录前边的间隙插入新记录,所以InnoDB就提出了一种称之为 Next-Key Locks 的锁,官方的类型名称为:LOCK_ORDINARY,我们也可以简称为next-key锁。Next-Key Locks是在存储引擎innodb、事务级别在可重复读的情况下使用的数据库锁,innodb默认的锁就是Next-Key locks。比如,我们把id值为8的那条记录加一个next-key锁的示意图如下:

详解数据库的锁机制及原理

next-key锁的本质就是一个记录锁和一个gap锁的合体,它既能保护该条记录,又能阻止别的事务将新记录插入被保护记录前边的间隙😜


8.插入意向锁

我们说一个事务在插入一条记录时需要判断一下插入位置是不是被别的事务加了gap锁(next-key锁也包含gap锁),如果有的话,插入操作需要等待,直到拥有gap锁的那个事务提交。但是InnoDB规定事务在等待的时候也需要在内存中生成一个锁结构,表明有事务想在某个间隙中插入新记录,但是现在在等待。InnoDB就把这种类型的锁命名为Insert Intention Locks,官方的类型名称为:LOCK_INSERT_INTENTION,我们称为插入意向锁。插入意向锁是一种Gap锁,不是意向锁,在insert操作时产生。

插入意向锁是在插入一条记录行前,由INSERT操作产生的一种间隙锁。该锁用以表示插入意向,当多个事务在同一区间(gap)插入位置不同的多条数据时,事务之间不需要互相等待。假设存在两条值分别为4和7的记录,两个不同的事务分别试图插入值为5和6的两条记录,每个事务在获取插入行上独占的(排他)锁前,都会获取(4,7)之间的间隙锁,但是因为数据行之间并不冲突,所以两个事务之间并不会产生冲突(阻塞等待)。总结来说,插入意向锁的特性可以分成两部分:

  • 插入意向锁是一种特殊的间隙锁 - 间隙锁可以锁定开区间内的部分记录。
  • 插入意向锁之间互不排斥,所以即使多个事务在同一区间插入多条记录,只要记录本身(主键、唯一索引)不冲突,那么事务之间就不会出现冲突等待。

本教程部分基于CSDN博主:Stephen.W
文章来源地址https://www.toymoban.com/news/detail-449500.html

到了这里,关于详解数据库的锁机制及原理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 什么是数据库锁(Lock)?有哪些类型的锁

    数据库锁(Lock)是在数据库管理系统中用于管理并发访问数据的重要机制。它们确保了多个用户或事务可以同时访问数据库,同时保护数据的完整性。在本文中,我们将深入探讨数据库锁的概念,以及常见的数据库锁类型和用法。 数据库锁是一种机制,用于协调多个并发事

    2024年02月07日
    浏览(27)
  • 【数据库】执行计划中的两趟算法机制原理,基于排序算法来分析,算法的限制,执行代价以及优化

    ​ 专栏内容 : 手写数据库toadb 本专栏主要介绍如何从零开发,开发的步骤,以及开发过程中的涉及的原理,遇到的问题等,让大家能跟上并且可以一起开发,让每个需要的人成为参与者。 本专栏会定期更新,对应的代码也会定期更新,每个阶段的代码会打上tag,方便阶段学

    2024年02月05日
    浏览(33)
  • MySQL中的锁机制详解

    事务的 隔离性 (隔离级别)是由锁来保证的。 并发访问数据的情况分为: 1.读-读 即并发事务相继读取相同的记录,因为没涉及到数据的更改,所以不会有并发安全问题,允许这种情况发生。 2.写-写 即并发事务对相同记录进行修改,会出现 脏写 问题,因为任何一种隔离级

    2024年02月06日
    浏览(26)
  • 【数据库】聊聊MVCC机制与BufferPool缓存机制

    上一篇文章,介绍了隔离级别,MySQL默认是使用可重复读,但是在可重复读的级别下,可能会出现幻读,也就是读取到另一个session添加的数据,那么除了配合使用间隙锁的方式,还使用了MVCC机制解决,保证在可重复读的场景下,同一个session读取的数据一致性。 MVCC(Multi-Vers

    2024年01月20日
    浏览(32)
  • MySQL数据库索引机制

    MySQL是一款有客户端和服务端的网络应用,mysql是它的客户端,mysqld是它的服务端。服务端本质就是一个进程,它存在于内存当中。而我们存储在MySQL中的数据是保存在磁盘上的,当我们对MySQL中数据进行增删查改操作时,不可能是直接在磁盘上进行操作,而是将对应的数据加

    2024年02月12日
    浏览(48)
  • 十种数据库缓存相关的技术和机制

    数据库的缓存 -- 通过将数据库中的数据或结果集保存在内存或其他快速访问的介质中,能够加快查询响应,减少对磁盘或远程服务器的访问,降低资源消耗。 根据缓存的位置、内容、粒度、更新方式等不同,数据库缓存技术有多种类型和策略。常用的以下10种: 数据页缓存

    2024年02月07日
    浏览(31)
  • 22. 数据库的隔离级别和锁机制

    1. 隔离级别说明 隔离级别是基于客户端来讨论的,不同的客户端在和服务器交互式可以有不同的隔离级别,客户端处在什么隔离级别就具有什么隔离级别的问题。mysql数据库的隔离级别一共有四种. 标志 名称 说明 read uncommitted 读未提交 不做任何隔离。可能产生脏读,不可重复

    2024年02月15日
    浏览(22)
  • 数据库原理1——《小猫猫大课堂》数据库原理篇

    宝子,你不点个赞吗?不评个论吗?不收个藏吗? 最后的最后,关注我,关注我,关注我,你会看到更多有趣的博客哦!!! 喵喵喵,你对我真的很重要。 目录 前言 1.2数据库基本概念 1.3数据库三级模式和两级数据独立性 1.4数据库技术发展历史与分类 1.5数据库系统的组成

    2024年02月15日
    浏览(28)
  • 使用Flink CDC从数据库采集数据,保证数据不丢失:实现断点续传机制

    大数据技术在当前的数据分析和处理中扮演着重要的角色。Apache Flink作为一种快速、可靠的流处理引擎,在大规模数据处理中广受欢迎。本文将介绍如何使用Flink CDC(Change Data Capture)从数据库采集数据,并通过设置checkpoint来支持数据采集中断恢复,从而保证数据不丢失。

    2024年02月04日
    浏览(34)
  • 【数据库原理】(27)数据库恢复

    在数据库系统中,恢复是指在发生某种故障导致数据库数据不再正确时,将数据库恢复到已知正确的某一状态的过程。数据库故障可能由多种原因引起,包括硬件故障、软件错误、操作员失误以及恶意破坏。为了确保数据库的安全性和完整性,数据库管理系统(DBMS)必须具有

    2024年01月16日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包