轻松玩转开源大语言模型bloom(四)

这篇具有很好参考价值的文章主要介绍了轻松玩转开源大语言模型bloom(四)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

前几篇都围绕着语言模型的decoding strategy来讲述,今天将进入进阶篇,在解码策略效果有限和提示词修改也无法满意的情况下如何提升模型的效果呢?这时我们需要对大语言模型进行fine-tune,即微调。一般我们用的大语言模型都是别人在通用的大数据集上训练过后的,或者已经在特殊领域微调过的,所以可能不适合我们当前所需要模型生成的内容。
本篇将以bloom-1b1模型为例,使用xturing库进行微调,由于微调是特别吃显存的,手里没有大显存卡的可以像我一样使用google的colab服务,保证16GiB及以上的显存。
可以通过命令行里输nvidia-smi查看,如下图所示有40960的MiB,也就是40个Gib。
轻松玩转开源大语言模型bloom(四)

数据集准备

轻松玩转开源大语言模型bloom(四)
首先要准备一个json文件,里面是一个大list,包含了很多dict,字典的格式是{“instruction”:xxx,“input”:“”,“output”:xxx},instruction表示问题或者指导语,input表示输入,有的时候数学问题需要告诉变量数值,output表示输出,也即文字生成内容。

本例中用的是自己挖掘的中文问题回答数据集,在前一篇文章里有写,感兴趣的自己尝试,这里就不放出来了,而且因为封锁的很严,本例中只挖取了其中500多条问答内容,作为微调的示例。

准备好了json之后,先pip安装datasets库,然后通过如下的代码生成格式数据集:

import json

from datasets import Dataset, DatasetDict

def preprocess_alpaca_json_data(alpaca_dataset_path: str):
    alpaca_data = json.load(open(alpaca_dataset_path))
    instructions = []
    inputs = []
    outputs = []

    for data in alpaca_data:
        instructions.append(data["instruction"])
        inputs.append(data["input"])
        outputs.append(data["output"])

    data_dict = {
        "train": {"instruction": instructions, "text": inputs, "target": outputs}
    }

    dataset = DatasetDict()
    # using your `Dict` object
    for k, v in data_dict.items():
        dataset[k] = Dataset.from_dict(v)

    dataset.save_to_disk(str("./alpaca_data"))
preprocess_alpaca_json_data('你的数据集.json')

调用函数生成完毕后会生成一个文件夹,内容如图所示:
轻松玩转开源大语言模型bloom(四)

代码

首先如果是在colab里运行,请先保证正确的运行时:
轻松玩转开源大语言模型bloom(四)
选择gpu-标准或者高级。每小时都会消耗计算单元,我这里是因为上个月开了colab的会员,所以有100个计算单元,普通没会员的用户大概只能用标准白嫖。

然后安装必要的库,这里推荐不用colab的也在linux下运行,除非你对Windows下VS的编译足够自信

!pip install accelerate
!pip install xturing --upgrade

接下来就是顺风顺水的运行代码:

from xturing.datasets.instruction_dataset import InstructionDataset
from xturing.models.base import BaseModel

instruction_dataset = InstructionDataset("/content/alpaca_data")
model = BaseModel.create("bloom_lora")

刚生成的文件夹路径填进去,然后.create方法里填bloom_lora,默认是bloom_1b1模型,用lora加速训练。

# Finetuned the model
model.finetune(dataset=instruction_dataset)

开始训练,默认是三轮,本例数据集大概用了六分钟就微调好了。
轻松玩转开源大语言模型bloom(四)
训练完了之后尝试生成,先改下generation_config,也就是解码策略:

generation_config = model.generation_config()
generation_config.top_k = 50
generation_config.do_sample = True
generation_config.top_p = 0.8
generation_config.max_new_tokens=512

拿今天的热搜问题试试:

# Once the model has been finetuned, you can start doing inferences
output = model.generate(texts=["第一视角进入风暴中心,是种什么体验?"])
print("Generated output by the model: {}".format(output))

结果如下:

登陆后第一时间发现风有多狂,能感觉空气怎么突然就凉爽了。
在云层中翻滚,能感受到海面下风的肆虐,云层下也有很多小冰块在打滚。风会从上向下刮,就像是在刮雪一样,刮的特别猛烈,在云层下翻滚。 
风暴中心,是风暴的终点,是整个风暴的中心,风向是逆着往复,风向逆着风向,风暴中心就会变成云层,然后刮的特别快,在云层下翻滚,最后消失。 
风暴中心,是风暴的最顶端,风向是顺着往复,风向顺着风向,风暴中心就会变成云层,然后刮的特别快,在云层下翻滚,最后消失。

同样的问题使用一样的配置代码对比默认模型生成效果
轻松玩转开源大语言模型bloom(四)

一视角进入风暴中心,是种什么体验? 
影片中,马特所在的直升机,在进入风暴中心之前,需要先从高空中观察四周环境。
在空中,除了气象台、直升机、救援队伍,还有各种各样的设备,包括直升机吊舱、直升机降落伞、直升机加油机、直升机导航仪等。
这些设备中,最为核心的部分就是直升机吊舱,
因为直升机吊舱可以搭载直升机和飞机,直升机吊舱的重量相当于一架直升机的载荷,因此可以搭载更多直升机。

可以发现默认模型的中文全在谈直升飞机偏离主题了。。。效果提升明显。

再换个句子生成看看微调后的效果:
轻松玩转开源大语言模型bloom(四)

但已经对它的价值产生了足够的怀疑。
首先,我们无法证明谷歌Pixel手机和Android平板电脑的性能有多强。
第二,由于谷歌没有在手机上开发过操作系统,因此谷歌无法从Android平板电脑获得与谷歌Pixel类似的安全性能,即使谷歌Pixel手机使用安卓系统,但Android平板电脑的设备也可能使用非谷歌Android设备,例如,Windows系统。在Android平板电脑上,Android设备运行的是非谷歌Android设备。
第三,谷歌Android平板电脑的电池是无法在谷歌Android平板电脑上长期使用的。

默认模型:

虽然我还没有实际体验到产品,所以不敢给一个准确的答案。
但是从实际体验来说,这款产品确实是十分不错的,我个人觉得颜值和外观设计都是十分不错的,而且售价也确实是不错。
不过我还是建议大家在购买前先了解下这款产品的信息。</s>

从上面可以看出微调确实有效果,那么我该如何保存生成的模型呢?其实在目录下已经有了saved_model的文件夹,只要把它拖到谷歌硬盘里打包下载下来就行了。文章来源地址https://www.toymoban.com/news/detail-449789.html

到了这里,关于轻松玩转开源大语言模型bloom(四)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • BigScience bloom模型

    项目叫 BigScience, 模型叫 BLOOM, BLOOM 的英文全名代表着大科学、大型、开放科学、开源的多语言语言模型。 拥有 1760 亿个参数的模型. BLOOM 是去年由 1000 多名志愿研究人员,学者 在一个名为“大科学 BigScience”的项目中创建的. BLOOM 和今天其他可用大型语言模型存在的一个主要区

    2023年04月15日
    浏览(34)
  • 优化故事: BLOOM 模型推理

    经过“九九八十一难”,大模型终于炼成。下一步就是架设服务,准备开门营业了。真这么简单?恐怕未必!行百里者半九十,推理优化又是新的雄关漫道。如何进行延迟优化?如何进行成本优化 (别忘了 OpenAI 8K 上下文的 GPT-4 模型,提示每 1000 词元只需 0.03 美金,补全每

    2023年04月17日
    浏览(38)
  • AI代码翻译神器,用AI翻译代码,轻松学习不同编程语言,已开源!

    体验地址,github地址和部署地址在文章底部 近年来,随着技术的快速进步,人工智能技术展现出了在各个领域发挥作用的巨大潜力。AI代码翻译器作为一项创新技术,为开发者带来了全新的可能性。这项技术运用人工智能,能够将一种编程语言的代码翻译成另一种,便利了跨

    2024年01月21日
    浏览(75)
  • 大模型之Bloom&LLAMA----SFT(模型微调)

    随着chatgpt的爆火,最近也有很多大模型在不断地出现,比如说Bloom系列以及以LLAMA为基础的ziya和baichuan。这些模型相较于chatglm来说,更加具有发展前景,因为其是完全可商用,并可以不断迭代更新的。最近作者在跟着hiyouga大佬的LLaMA-Efficient-Tuning进行学习,相较于其他的项目

    2024年02月12日
    浏览(44)
  • 【ChatGLM】本地版ChatGPT ?6G显存即可轻松使用 !ChatGLM-6B 清华开源模型本地部署教程

    目录 感谢B站秋葉aaaki大佬 前言 部署资源 部署流程  实机演示 ChatGML微调(人格炼成)(个人感觉蛮有趣的地方)  分享有趣の微调人格  实机演示(潘金莲人格) 秋葉aaaki的个人空间_哔哩哔哩_bilibili https://space.bilibili.com/12566101 由于ChatGLM-6B的规模较小,目前已知其具有相当

    2024年02月06日
    浏览(51)
  • LLMOps快速入门,轻松开发部署大语言模型

    大家好,如今我们能够与ChatGPT进行轻松互动:只需输入提示,按下回车,就能迅速得到回应。然而,这个无缝互动的底层,是一系列复杂而有序的自动执行步骤,即大型语言模型运营(LLMOps),确保用户的提示有效传递和处理,并在几秒内生成精准、可靠的回答。 本文将分

    2024年04月09日
    浏览(39)
  • 【大语言模型】轻松本地部署Stable Diffusion

    硬件要求: 配备至少8GB VRAM的GPU,如果你的电脑只有CPU,请看到最后。 根据部署规模,需要足够的CPU和RAM。 软件要求: Python 3.7或更高版本。 支持NVIDIA GPU的PyTorch。 Hugging Face的Diffusers库。 Hugging Face的Transformers库。 步骤: 1. 设置Python环境 安装Python并创建一个虚拟环境: 2.

    2024年04月17日
    浏览(54)
  • 深度学习实战38-基于清华ChatGLM-6b开源模型做体检报告解读任务,让体检报告解读变得轻松

    大家好,我是微学AI,今天给大家介绍一下深度学习实战38-基于清华ChatGLM-6b开源模型做体检报告解读任务,让体检报告解读变得轻松。ChatGLM-6b是清华大学团队开源的一个语言大模型。本文将介绍一种基于ChatGLM-6B的体检报告智能解读应用项目。首先,我们将讨论体检报告解读

    2024年02月10日
    浏览(96)
  • 在 Google Cloud 上轻松部署开放大语言模型

    今天,“在 Google Cloud 上部署”功能正式上线! 这是 Hugging Face Hub 上的一个新功能,让开发者可以轻松地将数千个基础模型使用 Vertex AI 或 Google Kubernetes Engine (GKE) 部署到 Google Cloud。 Model Garden (模型库) 是 Google Cloud Vertex AI 平台的一个工具,用户能够发现、定制和部署来自

    2024年04月14日
    浏览(42)
  • 我用Streamlit+LLM(大型语言模型)轻松实现Web聊天

    Streamlit是时下比较热门的一个基于Python的Web应用程序框架,它可以在几分钟内将数据转化为可共享的Web应用程序,无需前端开发经验,使用纯Python代码实现,简单且高效。ChatGPT是目前非常火的OpenAI公司开发的聊天机器人模型,它无所不知就像一本大百科全书,它可以帮你做很

    2024年02月16日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包