【大数据学习篇6】 Spark操作统计分析数据操作

这篇具有很好参考价值的文章主要介绍了【大数据学习篇6】 Spark操作统计分析数据操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

通过前面的文章安装好环境下面我们就可以开始来操作

1. Spark操作  

  [hd@master ~]$ spark-shell
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
2022-09-14 23:13:12,403 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Spark context Web UI available at http://192.168.159.129:4040
Spark context available as 'sc' (master = local[*], app id = local-1663168393546).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.1
      /_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_121)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
scala> val rdd = sc.textFile("/data/tall_sum.csv")
rdd: org.apache.spark.rdd.RDD[String] = /data/tall_sum.csv MapPartitionsRDD[1] at textFile at <console>:24
scala> rdd.collect
res0: Array[String] = Array(1,178.80,0.00,上海,2020-02-21 00:00:00,,0.00, 2,21.00,21.00,内蒙古自治区,2020-02-20 23:59:54,2020-02-21 00:00:02,0.00, 3,37.00,0.00,安徽省,2020-02-20 23:59:35,,0.00, 4,157.00,157.00,湖南省,2020-02-20 23:58:34,2020-02-20 23:58:44,0.00, 5,64.80,0.00,江苏省,2020-02-20 23:57:04,2020-02-20 23:57:11,64.80, 6,327.70,148.90,浙江省,2020-02-20 23:56:39,2020-02-20 23:56:53,178.80, 7,357.00,357.00,天津,2020-02-20 23:56:36,2020-02-20 23:56:40,0.00, 8,53.00,53.00,浙江省,2020-02-20 23:56:12,2020-02-20 23:56:16,0.00, 9,43.00,0.00,湖南省,2020-02-20 23:54:53,2020-02-20 23:55:04,43.00, 10,421.00,421.00,北京,2020-02-20 23:54:28,2020-02-20 23:54:33,0.00, 11,267.90,0.00,北京,2020-02-20 23:54:24,2020-02-20 23:54:31,267.90, 12,37.00,37.00,四川省,2020-02-20 23:54:24,2020-02-20 23:54:31,0.00, 13,53.00,53.00,上海,2020-02-...
scala>
scala> val rdd1 = rdd.map(_.split(","))
rdd1: org.apache.spark.rdd.RDD[Array[String]] = MapPartitionsRDD[2] at map at <console>:26
scala> rdd1.collect
res1: Array[Array[String]] = Array(Array(1, 178.80, 0.00, 上海, 2020-02-21 00:00:00, "", 0.00), Array(2, 21.00, 21.00, 内蒙古自治区, 2020-02-20 23:59:54, 2020-02-21 00:00:02, 0.00), Array(3, 37.00, 0.00, 安徽省, 2020-02-20 23:59:35, "", 0.00), Array(4, 157.00, 157.00, 湖南省, 2020-02-20 23:58:34, 2020-02-20 23:58:44, 0.00), Array(5, 64.80, 0.00, 江苏省, 2020-02-20 23:57:04, 2020-02-20 23:57:11, 64.80), Array(6, 327.70, 148.90, 浙江省, 2020-02-20 23:56:39, 2020-02-20 23:56:53, 178.80), Array(7, 357.00, 357.00, 天津, 2020-02-20 23:56:36, 2020-02-20 23:56:40, 0.00), Array(8, 53.00, 53.00, 浙江省, 2020-02-20 23:56:12, 2020-02-20 23:56:16, 0.00), Array(9, 43.00, 0.00, 湖南省, 2020-02-20 23:54:53, 2020-02-20 23:55:04, 43.00), Array(10, 421.00, 421.00, 北京, 2020-02-20 23:54:28, 2020-02-20 23:54:33, 0.00), Array(11, 267.90...
scala> case class Order(orderNo:Int,deal:Double,pay:Double,province:String,orderTime:String,payTime:String,refund:Double)
defined class Order
scala> val rdd2 = rdd1.map(x=>Order(x(0).toInt,x(1).toDouble,x(2).toDouble,x(3),x(4),x(5),x(6).toDouble))
rdd2: org.apache.spark.rdd.RDD[Order] = MapPartitionsRDD[3] at map at <console>:30
scala> rdd2.collect
res2: Array[Order] = Array(Order(1,178.8,0.0,上海,2020-02-21 00:00:00,,0.0), Order(2,21.0,21.0,内蒙古自治区,2020-02-20 23:59:54,2020-02-21 00:00:02,0.0), Order(3,37.0,0.0,安徽省,2020-02-20 23:59:35,,0.0), Order(4,157.0,157.0,湖南省,2020-02-20 23:58:34,2020-02-20 23:58:44,0.0), Order(5,64.8,0.0,江苏省,2020-02-20 23:57:04,2020-02-20 23:57:11,64.8), Order(6,327.7,148.9,浙江省,2020-02-20 23:56:39,2020-02-20 23:56:53,178.8), Order(7,357.0,357.0,天津,2020-02-20 23:56:36,2020-02-20 23:56:40,0.0), Order(8,53.0,53.0,浙江省,2020-02-20 23:56:12,2020-02-20 23:56:16,0.0), Order(9,43.0,0.0,湖南省,2020-02-20 23:54:53,2020-02-20 23:55:04,43.0), Order(10,421.0,421.0,北京,2020-02-20 23:54:28,2020-02-20 23:54:33,0.0), Order(11,267.9,0.0,北京,2020-02-20 23:54:24,2020-02-20 23:54:31,267.9), Order(12,37.0,37.0,四川省,2020-02-20 23:54:24,2020-...
scala> val df = rdd2.toDF
2022-09-14 23:19:17,272 WARN conf.HiveConf: HiveConf of name hive.server2.thrift.client.user does not exist
2022-09-14 23:19:17,272 WARN conf.HiveConf: HiveConf of name hive.server2.thrift.client.password does not exist
2022-09-14 23:19:18,509 WARN conf.HiveConf: HiveConf of name hive.server2.thrift.client.user does not exist
2022-09-14 23:19:18,509 WARN conf.HiveConf: HiveConf of name hive.server2.thrift.client.password does not exist
2022-09-14 23:19:20,805 WARN metastore.ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
2022-09-14 23:19:20,947 WARN conf.HiveConf: HiveConf of name hive.server2.thrift.client.user does not exist
2022-09-14 23:19:20,948 WARN conf.HiveConf: HiveConf of name hive.server2.thrift.client.password does not exist
df: org.apache.spark.sql.DataFrame = [orderNo: int, deal: double ... 5 more fields]
scala> df.show
+-------+-----+-----+--------+-------------------+-------------------+------+
|orderNo| deal|  pay|province|          orderTime|            payTime|refund|
+-------+-----+-----+--------+-------------------+-------------------+------+
|      1|178.8|  0.0|      上海|2020-02-21 00:00:00|                   |   0.0|
|      2| 21.0| 21.0|  内蒙古自治区|2020-02-20 23:59:54|2020-02-21 00:00:02|   0.0|
|      3| 37.0|  0.0|     安徽省|2020-02-20 23:59:35|                   |   0.0|
|      4|157.0|157.0|     湖南省|2020-02-20 23:58:34|2020-02-20 23:58:44|   0.0|
|      5| 64.8|  0.0|     江苏省|2020-02-20 23:57:04|2020-02-20 23:57:11|  64.8|
|      6|327.7|148.9|     浙江省|2020-02-20 23:56:39|2020-02-20 23:56:53| 178.8|
|      7|357.0|357.0|      天津|2020-02-20 23:56:36|2020-02-20 23:56:40|   0.0|
|      8| 53.0| 53.0|     浙江省|2020-02-20 23:56:12|2020-02-20 23:56:16|   0.0|
|      9| 43.0|  0.0|     湖南省|2020-02-20 23:54:53|2020-02-20 23:55:04|  43.0|
|     10|421.0|421.0|      北京|2020-02-20 23:54:28|2020-02-20 23:54:33|   0.0|
|     11|267.9|  0.0|      北京|2020-02-20 23:54:24|2020-02-20 23:54:31| 267.9|
|     12| 37.0| 37.0|     四川省|2020-02-20 23:54:24|2020-02-20 23:54:31|   0.0|
|     13| 53.0| 53.0|      上海|2020-02-20 23:53:50|2020-02-20 23:57:09|   0.0|
|     14| 34.9|  0.0|      天津|2020-02-20 23:53:44|                   |   0.0|
|     15| 96.8|  0.0|     贵州省|2020-02-20 23:51:37|                   |   0.0|
|     16| 80.8| 80.8|      天津|2020-02-20 23:51:29|2020-02-20 23:51:35|   0.0|
|     17| 37.0| 37.0|     辽宁省|2020-02-20 23:51:22|2020-02-20 23:51:30|   0.0|
|     18|119.0|119.0|      上海|2020-02-20 23:50:55|2020-02-20 23:51:12|   0.0|
|     19| 37.0| 37.0|     浙江省|2020-02-20 23:50:48|2020-02-20 23:51:00|   0.0|
|     20|238.0|238.0|      上海|2020-02-20 23:50:08|2020-02-20 23:50:17|   0.0|
+-------+-----+-----+--------+-------------------+-------------------+------+
only showing top 20 rows
scala> df.createOrReplaceTempView("v_order")
scala> spark.sql("select * from v_order ").show
+-------+-----+-----+--------+-------------------+-------------------+------+
|orderNo| deal|  pay|province|          orderTime|            payTime|refund|
+-------+-----+-----+--------+-------------------+-------------------+------+
|      1|178.8|  0.0|      上海|2020-02-21 00:00:00|                   |   0.0|
|      2| 21.0| 21.0|  内蒙古自治区|2020-02-20 23:59:54|2020-02-21 00:00:02|   0.0|
|      3| 37.0|  0.0|     安徽省|2020-02-20 23:59:35|                   |   0.0|
|      4|157.0|157.0|     湖南省|2020-02-20 23:58:34|2020-02-20 23:58:44|   0.0|
|      5| 64.8|  0.0|     江苏省|2020-02-20 23:57:04|2020-02-20 23:57:11|  64.8|
|      6|327.7|148.9|     浙江省|2020-02-20 23:56:39|2020-02-20 23:56:53| 178.8|
|      7|357.0|357.0|      天津|2020-02-20 23:56:36|2020-02-20 23:56:40|   0.0|
|      8| 53.0| 53.0|     浙江省|2020-02-20 23:56:12|2020-02-20 23:56:16|   0.0|
|      9| 43.0|  0.0|     湖南省|2020-02-20 23:54:53|2020-02-20 23:55:04|  43.0|
|     10|421.0|421.0|      北京|2020-02-20 23:54:28|2020-02-20 23:54:33|   0.0|
|     11|267.9|  0.0|      北京|2020-02-20 23:54:24|2020-02-20 23:54:31| 267.9|
|     12| 37.0| 37.0|     四川省|2020-02-20 23:54:24|2020-02-20 23:54:31|   0.0|
|     13| 53.0| 53.0|      上海|2020-02-20 23:53:50|2020-02-20 23:57:09|   0.0|
|     14| 34.9|  0.0|      天津|2020-02-20 23:53:44|                   |   0.0|
|     15| 96.8|  0.0|     贵州省|2020-02-20 23:51:37|                   |   0.0|
|     16| 80.8| 80.8|      天津|2020-02-20 23:51:29|2020-02-20 23:51:35|   0.0|
|     17| 37.0| 37.0|     辽宁省|2020-02-20 23:51:22|2020-02-20 23:51:30|   0.0|
|     18|119.0|119.0|      上海|2020-02-20 23:50:55|2020-02-20 23:51:12|   0.0|
|     19| 37.0| 37.0|     浙江省|2020-02-20 23:50:48|2020-02-20 23:51:00|   0.0|
|     20|238.0|238.0|      上海|2020-02-20 23:50:08|2020-02-20 23:50:17|   0.0|
+-------+-----+-----+--------+-------------------+-------------------+------+
only showing top 20 rows
scala> spark.sql("select province,sum(deal) val from v_order group by province ").show
+--------+------------------+
|province|        val       |
+--------+------------------+
|   西藏自治区|            489.72|
|     辽宁省|107355.93000000007|
|     浙江省|         203126.96|
| 广西壮族自治区| 35140.09999999999|
|     海南省|          16828.18|
|     河北省|106561.56000000004|
|     福建省|37075.529999999984|
|     湖南省|102929.22000000007|
| 宁夏回族自治区|           4804.92|
|      天津|124564.24000000003|
|     陕西省|          59450.93|
|     山西省|46568.799999999996|
|  内蒙古自治区|           36827.0|
|     甘肃省|          14294.76|
|     贵州省|          32274.16|
|     湖北省|            8581.7|
|     四川省|188948.12000000005|
|    黑龙江省| 35058.28999999999|
|     广东省|227855.27999999968|
|      重庆|108975.65000000008|
+--------+------------------+
only showing top 20 rows
scala> val df1 = spark.sql("select province,sum(deal) val from v_order group by province ")
df1: org.apache.spark.sql.DataFrame = [province: string, sum(deal): double]
scala> df1.show
+--------+------------------+
|province|        val       |
+--------+------------------+
|   西藏自治区|            489.72|
|     辽宁省|107355.93000000007|
|     浙江省|         203126.96|
| 广西壮族自治区| 35140.09999999999|
|     海南省|          16828.18|
|     河北省|106561.56000000004|
|     福建省|37075.529999999984|
|     湖南省|102929.22000000007|
| 宁夏回族自治区|           4804.92|
|      天津|124564.24000000003|
|     陕西省|          59450.93|
|     山西省|46568.799999999996|
|  内蒙古自治区|           36827.0|
|     甘肃省|          14294.76|
|     贵州省|          32274.16|
|     湖北省|            8581.7|
|     四川省|188948.12000000005|
|    黑龙江省| 35058.28999999999|
|     广东省|227855.27999999968|
|      重庆|108975.65000000008|
+--------+------------------+
only showing top 20 rows
###读取MySQL数据
scala>  spark.read.format("jdbc").options(Map("url" -> "jdbc:mysql://localhost:3306/test", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "order_stat", "user" -> "hive", "password" -> "123456")).load().show()
+---+------+--------+--------+
| id|rowkey|province|     val|
+---+------+--------+--------+
|  1|stat01|      GD|32003.98|
+---+------+--------+--------+
###写入MySQL
scala> df1.write.format("jdbc").mode("append").options(Map("url" -> "jdbc:mysql://localhost:3306/test?characterEncoding=utf8", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "order_stat2", "user" -> "hive", "password" -> "123456")).save()
###读取MySQL数据
scala> spark.read.format("jdbc").options(Map("url" -> "jdbc:mysql://localhost:3306/test", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "order_stat2", "user" -> "hive", "password" -> "123456")).load().show()
+--------+------------------+
|province|               val|
+--------+------------------+
|   西藏自治区|            489.72|
|     辽宁省|107355.93000000007|
|     浙江省|         203126.96|
| 广西壮族自治区| 35140.09999999999|
|     海南省|          16828.18|
|     河北省|106561.56000000004|
|     福建省|37075.529999999984|
|     湖南省|102929.22000000007|
| 宁夏回族自治区|           4804.92|
|      天津|124564.24000000003|
|     陕西省|          59450.93|
|     山西省|46568.799999999996|
|  内蒙古自治区|           36827.0|
|     贵州省|          32274.16|
|     甘肃省|          14294.76|
|     四川省|188948.12000000005|
|     湖北省|            8581.7|
|     广东省|227855.27999999968|
|    黑龙江省| 35058.28999999999|
|      重庆|108975.65000000008|
+--------+------------------+
only showing top 20 rows

2. MySQL操作

[hd@master ~]$ mysql -u hive -p
Enter password:
Welcome to the MariaDB monitor.  Commands end with ; or \g.
Your MariaDB connection id is 48
Server version: 10.4.18-MariaDB MariaDB Server
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [(none)]> show databases;
+--------------------+
| Database           |
+--------------------+
| hive               |
| information_schema |
| mysql              |
| performance_schema |
| test               |
+--------------------+
5 rows in set (0.003 sec)
MariaDB [(none)]> use test
Database changed
MariaDB [test]> show tables;
Empty set (0.001 sec)
###设计一个通用的表,用来装不用统计的数据
MariaDB [test]> CREATE TABLE `order_stat` (`id` int NOT NULL AUTO_INCREMENT,`rowkey` varchar(20) DEFAULT NULL,  `province` varchar(25) DEFAULT NULL,  `val` double DEFAULT NULL,  KEY `id` (`id`)) ;
Query OK, 0 rows affected (0.004 sec)
MariaDB [test]> select * from order_stat;
Empty set (0.001 sec)
MariaDB [test]> insert into order_stat(rowkey,province,val) values('stat01','GD',32003.98);
Query OK, 1 row affected (0.001 sec)
MariaDB [test]>
MariaDB [test]>
MariaDB [test]> CREATE TABLE `order_stat2` (
    ->   `province` VARCHAR(25) DEFAULT NULL,
    ->   `val` DOUBLE DEFAULT NULL
    -> )
    -> ;
Query OK, 0 rows affected (0.003 sec)
MariaDB [test]>
MariaDB [test]> select * from order_stat2;
Empty set (0.000 sec)
MariaDB [test]>
MariaDB [(none)]> select * from  test.order_stat2;
+--------------------------+--------------------+
| province                 | val                |
+--------------------------+--------------------+
| 西藏自治区               |             489.72 |
| 辽宁省                   | 107355.93000000007 |
| 浙江省                   |          203126.96 |
| 广西壮族自治区           |  35140.09999999999 |
| 海南省                   |           16828.18 |
| 河北省                   | 106561.56000000004 |
| 福建省                   | 37075.529999999984 |
| 湖南省                   | 102929.22000000007 |
| 宁夏回族自治区           |            4804.92 |
| 天津                     | 124564.24000000003 |
| 陕西省                   |           59450.93 |
| 山西省                   | 46568.799999999996 |
| 内蒙古自治区             |              36827 |
| 贵州省                   |           32274.16 |
| 甘肃省                   |           14294.76 |
| 四川省                   | 188948.12000000005 |
| 湖北省                   |             8581.7 |
| 广东省                   | 227855.27999999968 |
| 黑龙江省                 |  35058.28999999999 |
| 重庆                     | 108975.65000000008 |
| 新疆维吾尔自治区         |            10112.9 |
| 山东省                   |  175046.1300000001 |
| 河南省                   |  90619.72000000003 |
| 吉林省                   |           42040.92 |
| 青海省                   |             2396.2 |
| 上海                     |  544907.6299999994 |
| 江西省                   | 36791.649999999994 |
| 安徽省                   |           61378.67 |
| 北京                     | 231055.48999999993 |
| 江苏省                   | 227930.92999999985 |
| 云南省                   |  75769.32000000002 |
+--------------------------+--------------------+
31 rows in set (0.000 sec)

3. MySQL中文乱码

使用MySQL的root用户对数据库进行修改以下设置文章来源地址https://www.toymoban.com/news/detail-450226.html

##修改整库的字符集
ALTER DATABASE <database_name> CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci;   
##修改表的字符集
ALTER TABLE <table_name> CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci; 
MariaDB [(none)]> ALTER DATABASE test  CHARACTER SET = utf8mb4 COLLATE = utf8mb4_unicode_ci ;
Query OK, 1 row affected (0.002 sec)
MariaDB [(none)]>
MariaDB [(none)]> ALTER TABLE test.order_stat2  CONVERT TO CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;
Query OK, 0 rows affected (0.010 sec)
Records: 0  Duplicates: 0  Warnings: 0

到了这里,关于【大数据学习篇6】 Spark操作统计分析数据操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【SAS应用统计分析】数据的描述性统计分析

    声明:本文知识参考内容来自网络,如有侵权请联系删除。本文还参照了B站up主庄7的课程内容【公开课】数据分析与SAS【15课】 目录 实验原理 描述性统计量 1.反映数据集中趋势的特征量 2.反映数据离散程度的特征量 3.反映数据分布形状的特征量 数据的图形描述 直方图 箱线

    2024年02月01日
    浏览(50)
  • 统计学习笔记:方差分析

    方差分析(ANOVA)又称F检验。方差分析是判定方差在组间和组内是否(明显)具有区别的一种方法。如果组内差异相对于组间差异较小,则可以推断出组与组之间是有明显差异的。 从形式上看,方差分析与t检验或z检验区别不大,都是检验均值是否相等,但方差分析可以同时

    2024年02月03日
    浏览(89)
  • 学习笔记:统计建模方法的比较分析

    本文介绍了隐马尔可夫模型 (HMM)、最大熵马尔可夫模型 (MEMM) 和条件随机场 (CRF) 的比较分析。 HMM、MEMM 和 CRF 是三种流行的统计建模方法,通常应用于模式识别和机器学习问题。 让我们更详细地探讨每种方法。 “隐藏”一词象征着只有系统发布的符号是可观察的,而用户无法

    2023年04月08日
    浏览(52)
  • 【postgresql 基础入门】聚合函数,通用型,统计分析型,多种多样的聚合函数满足数据的大数据的统计分析

    ​ 专栏内容 : postgresql内核源码分析 手写数据库toadb 并发编程 个人主页 :我的主页 管理社区 :开源数据库 座右铭:天行健,君子以自强不息;地势坤,君子以厚德载物. 在数据库管理系统中,SQL(结构化查询语言)的聚集函数扮演着至关重要的角色。它们能够对一组值执

    2024年04月10日
    浏览(66)
  • 使用Python进行数据分析——描述性统计分析

    大家好,描述性统计分析主要是指求一组数据的平均值、中位数、众数、极差、方差和标准差等指标,通过这些指标来发现这组数据的分布状态、数字特征等内在规律。在Python中进行描述性统计分析,可以借助Numpy、Pandas、SciPy等科学计算模块计算出指标,然后用绘图模块Ma

    2024年02月07日
    浏览(52)
  • 【数据分析】统计量

    1. 均值、众数描述数据的集中趋势度量,四分位差、极差描述数据的离散程度。 2. 标准差、四分位差、异众比率度量离散程度,协方差是度量相关性。  期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为: 从直观上来看,协方差表示的是两个变量总体误

    2024年02月11日
    浏览(45)
  • 数据科学、统计学、商业分析

    数据科学、统计学、商业分析是在各方面有着不同的侧重和方向的领域。  1.专业技能 数据科学(Data Science):数据科学涉及从大量数据中提取有价值的信息、模式和洞察力的领域。它使用多种技术和领域知识,如统计学、机器学习、数据库管理、数据可视化等,进行数据清

    2024年02月15日
    浏览(52)
  • 数据的统计描述和分析——假设检验

    对总体X的分布律或分布参数作某种假设,根据抽取的样本观察值,运用数理统计的分析方法,检验这种假设是否正确,从而决定接受假设或拒绝假设. 1. 参数检验 :如果观测的分布函数类型已知,这时构造出的统计量依赖于总体的分布函数,这种检验称为参数检验.参数检验

    2024年02月14日
    浏览(44)
  • R语言 | 数据分析——统计绘图

    目录 一、分类数据的图形描述 1.1 条形图barplot()函数 1.2 饼图pie()函数  二、量化数据的图形描述 2.1 点图与dotchart()函数 2.2 绘图函数plot()  2.2.1 绘制时间数列对象 ​2.2.2 向量数据与plot()函数 2.2.3 数据框数据与plot()函数 2.2.4  因子型数据与plot()函数 ​2.2.5 使用lines()函数绘制回

    2024年02月04日
    浏览(49)
  • 【Excel统计分析插件】上海道宁为您提供统计分析、数据可视化和建模软件——Analyse-it

    Analyse-it是Microsoft Excel中的 统计分析插件 它为Microsoft Excel带来了 易于使用的统计软件 Analyse-it在软件中 引入了一些新的创新统计分析   Analyse-it与 许多Excel加载项开发人员不同 使用完善的软件开发和QA实践 包括单元/集成/系统测试 敏捷开发、代码审查 问题跟踪和用于变更管

    2024年02月07日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包