模型
使用Assimp并创建实际的加载和转换代码。Model类结构如下:
class Model
{
public:
/* 函数 */
Model(char *path)
{
loadModel(path);
}
void Draw(Shader shader);
private:
/* 模型数据 */
vector<Mesh> meshes;
string directory;
/* 函数 */
void loadModel(string path);
void processNode(aiNode *node, const aiScene *scene);
Mesh processMesh(aiMesh *mesh, const aiScene *scene);
vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type,
string typeName);
};
Model类包含一个Mesh对象的vector,构造器参数需要一个文件路径。
构造器通过loadModel来加载文件。私有函数将会处理Assimp导入过程中的一部分,私有函数还存储了 文件路径的目录,加载纹理时会用到。
Draw函数的作用:遍历所有网格,调用网格 各自的Draw函数:
void Draw(Shader shader)
{
for(unsigned int i = 0; i < meshes.size(); i++)
meshes[i].Draw(shader);
}
导入3D模型
导入一个模型,并将其转换到自己的数据结构中。则首先需要包含Assimp对应的头文件:
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
首先调用函数loadModel,直接从构造器中调用。在该函数汇总,使用Assimp加载模型到Assimp的一个叫做scene的数据结构中。这个是场景对象,通过它可以访问到加载后的模型中所有需要的数据。
Assimp抽象了加载不同文件格式的所有技术细节,只需要一行代码即可:
Assimp::Importer importer;
const aiScene *scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
代码解读:声明了Assimp命名空间内的一个Importer,之后调用ReadFile函数。该函数需要一个文件路径,第二个参数是后期处理的选项。除了加载文件外,Assimp允许设定一些选项来强制它对导入的数据做一些额外的计算。
通过设定aiProcess_Triangulate ,能告诉Assimp,如果模型不是全部由三角形组成,那么需要将模型的所有图元转换成三角形。
aiProcess_FlipUVs,将在处理的时候翻转y轴的纹理坐标,因为在OpenGL中大部分的图像的y轴都是反的,所系这个后期处理选项可以修复该问题。
其他有用的选项还有:(https://assimp.sourceforge.net/lib_html/postprocess_8h.html)
- aiProcess_GenNormals:如果模型不包含法向量的话,就为每个顶点创建法线。
- aiProcess_SplitLargeMeshes:将比较大的网格分割成更小的子网格,如果你的渲染有最大顶点数限制,只能渲染较小的网格,那么它会非常有用。
- aiProcess_OptimizeMeshes:和上个选项相反,它会将多个小网格拼接为一个大的网格,减少绘制调用从而进行优化。
可以看出使用Assimp加载模型是非常容易的。难的是之后使用返回的场景对象将加载的数据转换到一个Mesh对象的数组。
完整的loadModel函数如下:
void loadModel(string path)
{
Assimp::Importer import;
const aiScene *scene = import.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
cout << "ERROR::ASSIMP::" << import.GetErrorString() << endl;
return;
}
directory = path.substr(0, path.find_last_of('/'));
processNode(scene->mRootNode, scene);
}
在我们加载了模型之后,我们会检查场景和其根节点不为null,并且检查了它的一个标记(Flag),来查看返回的数据是不是不完整的。如果遇到了任何错误,我们都会通过导入器的GetErrorString函数来报告错误并返回。我们也获取了文件路径的目录路径。
如果什么错误都没有发生,我们希望处理场景中的所有节点,所以我们将第一个节点(根节点)传入了递归的processNode函数。因为每个节点(可能)包含有多个子节点,我们希望首先处理参数中的节点,再继续处理该节点所有的子节点,以此类推。这正符合一个递归结构,所以我们将定义一个递归函数。递归函数在做一些处理之后,使用不同的参数递归调用这个函数自身,直到某个条件被满足停止递归。在我们的例子中退出条件(Exit Condition)是所有的节点都被处理完毕。
Assimp结构中,每个节点包含一系列网格索引,每个索引指向场景对象中的那个特定网格。接下来需要去获取这些网格索引,获取每个网格,处理每个网格,接着对每个节点的子节点重复这个过程,则processNode函数如下:
void processNode(aiNode *node, const aiScene *scene)
{
// 处理节点所有的网格(如果有的话)
for(unsigned int i = 0; i < node->mNumMeshes; i++)
{
aiMesh *mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));
}
// 接下来对它的子节点重复这一过程
for(unsigned int i = 0; i < node->mNumChildren; i++)
{
processNode(node->mChildren[i], scene);
}
}
我们首先检查每个节点的网格索引,并索引场景的mMeshes数组来获取对应的网格。返回的网格将会传递到processMesh函数中,它会返回一个Mesh对象,我们可以将它存储在meshes列表/vector。
所有网格都被处理之后,我们会遍历节点的所有子节点,并对它们调用相同的processMesh函数。当一个节点不再有任何子节点之后,这个函数将会停止执行。
下一步是将Assimp的数据解析到Mesh类中。就是将一根aiMesh对象转化为自己的网格对象。只需要访问网格的相关属性并将它们存储到自己的对象中。processMesh函数如下:
Mesh processMesh(aiMesh *mesh, const aiScene *scene)
{
vector<Vertex> vertices;
vector<unsigned int> indices;
vector<Texture> textures;
for(unsigned int i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
// 处理顶点位置、法线和纹理坐标
...
vertices.push_back(vertex);
}
// 处理索引
...
// 处理材质
if(mesh->mMaterialIndex >= 0)
{
...
}
return Mesh(vertices, indices, textures);
}
处理网格的过程主要有三部分:获取所有的顶点数据,获取它们的网格索引,并获取相关的材质数据。处理后的数据将会储存在三个vector当中,我们会利用它们构建一个Mesh对象,并返回它到函数的调用者那里。
1。获取顶点数据:定义了一个Vertex结构体,将在每个迭代之后将它加入到vertices数组中。会遍历网格中的所有顶点——使用mesh->mNumVertices来获取。每个迭代中,使用所有的相关数据填充这个结构体,顶点的位置如下:
glm::vec3 vector;
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
使用了vec3的临时变量,是因为Assimp对向量,矩阵,字符串等都有自己的一套数据类型,并不能完美地转换到GLM的数据类型中。
处理法线的过程类似:
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
纹理坐标的处理也大体相似,但Assimp允许一个模型在一个顶点上有最多8个不同的纹理坐标,我们不会用到那么多,我们只关心第一组纹理坐标。我们同样也想检查网格是否真的包含了纹理坐标:
if(mesh->mTextureCoords[0]) // 网格是否有纹理坐标?
{
glm::vec2 vec;
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertex结构体现在已经填充好了需要的顶点属性,我们会在迭代的最后将它压入vertices这个vector的尾部。这个过程会对每个网格的顶点都重复一遍。
Assimp的接口定义了每个网格都有一个面(Face)数组,每个面代表了一个图元,在例子中(由于使用了aiProcess_Triangulate选项)它总是三角形。一个面包含了多个索引,它们定义了在每个图元中,我们应该绘制哪个顶点,并以什么顺序绘制,所以如果我们遍历了所有的面,并储存了面的索引到indices这个vector中就可以了。
for(unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for(unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
到目前为止,有了一系列的顶点和索引数据,可以通过glDrawElements函数来绘制网格。为了提供一些细节,还需要处理网格的材质。
一个网格只包含了一个指向材质对象的索引。如果要获取网格真正的材质,还需要索引场景的mMaterials数组。网格材质索引位于其mMaterialIndex属性,同样可以用它来检测一个网格是否包含有材质:
if(mesh->mMaterialIndex >= 0)
{
aiMaterial *material = scene->mMaterials[mesh->mMaterialIndex];
vector<Texture> diffuseMaps = loadMaterialTextures(material,
aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
vector<Texture> specularMaps = loadMaterialTextures(material,
aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
}
我们首先从场景的mMaterials数组中获取aiMaterial对象。接下来我们希望加载网格的漫反射和/或镜面光贴图。一个材质对象的内部对每种纹理类型都存储了一个纹理位置数组。不同的纹理类型都以aiTextureType_为前缀。我们使用一个叫做loadMaterialTextures的工具函数来从材质中获取纹理。这个函数将会返回一个Texture结构体的vector,我们将在模型的textures的尾部之后存储它。
loadMaterialTextures函数遍历了给定纹理类型的所有纹理位置,获取了纹理的文件位置,并加载并和生成了纹理,将信息储存在了一个Vertex结构体中。loadMaterialTextures函数它看起来会像这样:
vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
Texture texture;
texture.id = TextureFromFile(str.C_Str(), directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);
}
return textures;
}
我们首先通过GetTextureCount函数检查储存在材质中纹理的数量,这个函数需要一个纹理类型。我们会使用GetTexture获取每个纹理的文件位置,它会将结果储存在一个aiString中。我们接下来使用另外一个叫做TextureFromFile的工具函数,它将会(用stb_image.h)加载一个纹理并返回该纹理的ID。第二个参数是模型的文件路径。
注意:我们假设了模型文件中纹理文件的路径是相对于模型文件的本地(Local)路径,比如说与模型文件处于同一目录下。我们可以将纹理位置字符串拼接到之前获取的目录字符串上(TextureFromFile),来获取完整的纹理路径(这也是为什么GetTexture函数也需要一个目录字符串)。
在网络上找到的某些模型会对纹理位置使用绝对(Absolute)路径,这就不能在每台机器上都工作了。在这种情况下,你可能会需要手动修改这个文件,来让它对纹理使用本地路径(如果可能的话)。
综上,是使用Assimp导入模型的全部。
优化
优化不是必须的,但是可以提高加载过程。
大多数场景都会在多个网络中 重用部分纹理。比如:一个纹理不仅可以用到人身上,也能用到物体身上。当然就是用同一个纹理进行加载。但是同样的纹理已经被加载过了很多遍,对每个网格仍会加载并生成一个新的纹理。很快就会变成模型加载实现的性能瓶颈。
可以被模型的代码进行调整,将所有加载过的纹理全局存储。每当要加载一个纹理的时候,首先去检查是否被加载过,如果有的话,直接使用那个纹理,并跳过整个加载流程。为了能够比较纹理,还需要存储它们的路径:
struct Texture {
unsigned int id;
string type;
aiString path; // 我们储存纹理的路径用于与其它纹理进行比较
};
接下来我们将所有加载过的纹理储存在另一个vector中,在模型类的顶部声明为一个私有变量:
vector<Texture> textures_loaded;
在loadMaterialTextures函数中,我们希望将纹理的路径与储存在textures_loaded这个vector中的所有纹理进行比较,看看当前纹理的路径是否与其中的一个相同。如果是的话,则跳过纹理加载/生成的部分,直接使用定位到的纹理结构体为网格的纹理。更新后的函数如下:
vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
bool skip = false;
for(unsigned int j = 0; j < textures_loaded.size(); j++)
{
if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true;
break;
}
}
if(!skip)
{ // 如果纹理还没有被加载,则加载它
Texture texture;
texture.id = TextureFromFile(str.C_Str(), directory);
texture.type = typeName;
texture.path = str.C_Str();
textures.push_back(texture);
textures_loaded.push_back(texture); // 添加到已加载的纹理中
}
}
return textures;
}
所以现在我们不仅有了个灵活的模型加载系统,我们也获得了一个加载对象很快的优化版本。
综上,完整代码如下:文章来源:https://www.toymoban.com/news/detail-451316.html
#ifndef MODEL_H
#define MODEL_H
#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <stb_image.h>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <learnopengl/mesh.h>
#include <learnopengl/shader.h>
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
unsigned int TextureFromFile(const char *path, const string &directory, bool gamma = false);
class Model
{
public:
// model data
vector<Texture> textures_loaded; // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
vector<Mesh> meshes;
string directory;
bool gammaCorrection;
// constructor, expects a filepath to a 3D model.
Model(string const &path, bool gamma = false) : gammaCorrection(gamma)
{
loadModel(path);
}
// draws the model, and thus all its meshes
void Draw(Shader &shader)
{
for(unsigned int i = 0; i < meshes.size(); i++)
meshes[i].Draw(shader);
}
private:
// loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
void loadModel(string const &path)
{
// read file via ASSIMP
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
// check for errors
if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
// retrieve the directory path of the filepath
directory = path.substr(0, path.find_last_of('/'));
// process ASSIMP's root node recursively
processNode(scene->mRootNode, scene);
}
// processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode *node, const aiScene *scene)
{
// process each mesh located at the current node
for(unsigned int i = 0; i < node->mNumMeshes; i++)
{
// the node object only contains indices to index the actual objects in the scene.
// the scene contains all the data, node is just to keep stuff organized (like relations between nodes).
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));
}
// after we've processed all of the meshes (if any) we then recursively process each of the children nodes
for(unsigned int i = 0; i < node->mNumChildren; i++)
{
processNode(node->mChildren[i], scene);
}
}
Mesh processMesh(aiMesh *mesh, const aiScene *scene)
{
// data to fill
vector<Vertex> vertices;
vector<unsigned int> indices;
vector<Texture> textures;
// walk through each of the mesh's vertices
for(unsigned int i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
// positions
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
// normals
if (mesh->HasNormals())
{
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
}
// texture coordinates
if(mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
{
glm::vec2 vec;
// a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
// tangent
vector.x = mesh->mTangents[i].x;
vector.y = mesh->mTangents[i].y;
vector.z = mesh->mTangents[i].z;
vertex.Tangent = vector;
// bitangent
vector.x = mesh->mBitangents[i].x;
vector.y = mesh->mBitangents[i].y;
vector.z = mesh->mBitangents[i].z;
vertex.Bitangent = vector;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
// now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for(unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// retrieve all indices of the face and store them in the indices vector
for(unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
// process materials
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
// we assume a convention for sampler names in the shaders. Each diffuse texture should be named
// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
// Same applies to other texture as the following list summarizes:
// diffuse: texture_diffuseN
// specular: texture_specularN
// normal: texture_normalN
// 1. diffuse maps
vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
// 2. specular maps
vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
// 3. normal maps
std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
// 4. height maps
std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());
// return a mesh object created from the extracted mesh data
return Mesh(vertices, indices, textures);
}
// checks all material textures of a given type and loads the textures if they're not loaded yet.
// the required info is returned as a Texture struct.
vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
// check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
bool skip = false;
for(unsigned int j = 0; j < textures_loaded.size(); j++)
{
if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if(!skip)
{ // if texture hasn't been loaded already, load it
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str.C_Str();
textures.push_back(texture);
textures_loaded.push_back(texture); // store it as texture loaded for entire model, to ensure we won't unnecessary load duplicate textures.
}
}
return textures;
}
};
unsigned int TextureFromFile(const char *path, const string &directory, bool gamma)
{
string filename = string(path);
filename = directory + '/' + filename;
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
if (data)
{
GLenum format;
if (nrComponents == 1)
format = GL_RED;
else if (nrComponents == 3)
format = GL_RGB;
else if (nrComponents == 4)
format = GL_RGBA;
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}
#endif
使用3D模型
加载一个3D模型,这个模型被输出为一个.obj文件和一个.mtl文件,.mtl文件包含了模型的漫反射,镜面光,法线贴图。
注意:所有的纹理和模型文件应该位于同一个目录下,以供加载纹理。
在代码中,声明一个Model对象,将模型的文件位置传入。接下来模型会自动加载并在渲染循环中使用它的Draw函数来绘制物体。不再需要缓冲分配、属性指针和渲染指令,只需要一行代码就可以了。文章来源地址https://www.toymoban.com/news/detail-451316.html
到了这里,关于第十三章 opengl之模型(导入3D模型)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!