各机器学习领域综述清单!

这篇具有很好参考价值的文章主要介绍了各机器学习领域综述清单!。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一个『机器学习领域综述大列表』,涵盖了自然语言处理、推荐系统、计算机视觉、深度学习、强化学习等主题。

另外发现源repo中NLP相关的综述不是很多,于是把一些觉得还不错的文章添加进去了,重新整理更新在 AI-Surveys[1] 中。

  • ml-surveys: https://github.com/eugeneyan/ml-surveys

  • AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

『收藏等于看完』系列,来看看都有哪些吧, enjoy!

自然语言处理

  • 深度学习:Recent Trends in Deep Learning Based Natural Language Processing[2]

  • 文本分类:Deep Learning Based Text Classification: A Comprehensive Review[3]

  • 文本生成:Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation[4]

  • 文本生成:Neural Language Generation: Formulation, Methods, and Evaluation[5]

  • 迁移学习:Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer[6] (Paper[7])

  • 迁移学习:Neural Transfer Learning for Natural Language Processing[8]

  • 知识图谱:A Survey on Knowledge Graphs: Representation, Acquisition and Applications[9]

  • 命名实体识别:A Survey on Deep Learning for Named Entity Recognition[10]

  • 关系抽取:More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction[11]

  • 情感分析:Deep Learning for Sentiment Analysis : A Survey[12]

  • ABSA情感分析:Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges[13]

  • 文本匹配:Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering[14]

  • 阅读理解:Neural Reading Comprehension And Beyond[15]

  • 阅读理解:Neural Machine Reading Comprehension: Methods and Trends[16]

  • 机器翻译:Neural Machine Translation: A Review[17]

  • 机器翻译:A Survey of Domain Adaptation for Neural Machine Translation[18]

  • 预训练模型:Pre-trained Models for Natural Language Processing: A Survey[19]

  • 注意力机制:An Attentive Survey of Attention Models[20]

  • 注意力机制:An Introductory Survey on Attention Mechanisms in NLP Problems[21]

  • 注意力机制:Attention in Natural Language Processing[22]

  • BERT:A Primer in BERTology: What we know about how BERT works[23]

  • Beyond Accuracy: Behavioral Testing of NLP Models with CheckList[24]

  • Evaluation of Text Generation: A Survey[25]

推荐系统

  • Recommender systems survey[26]

  • Deep Learning based Recommender System: A Survey and New Perspectives[27]

  • Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches[28]

  • A Survey of Serendipity in Recommender Systems[29]

  • Diversity in Recommender Systems – A survey[30]

  • A Survey of Explanations in Recommender Systems[31]

深度学习

  • A State-of-the-Art Survey on Deep Learning Theory and Architectures[32]

  • 知识蒸馏:Knowledge Distillation: A Survey[33]

  • 模型压缩:Compression of Deep Learning Models for Text: A Survey[34]

  • 迁移学习:A Survey on Deep Transfer Learning[35]

  • 神经架构搜索:A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions[36]

  • 神经架构搜索:Neural Architecture Search: A Survey[37]

计算机视觉

  • 目标检测:Object Detection in 20 Years[38]

  • 对抗性攻击:Threat of Adversarial Attacks on Deep Learning in Computer Vision[39]

  • 自动驾驶:Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art[40]

强化学习

  • A Brief Survey of Deep Reinforcement Learning[41]

  • Transfer Learning for Reinforcement Learning Domains[42]

  • Review of Deep Reinforcement Learning Methods and Applications in Economics[43]

Embeddings

  • 图:A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications[44]

  • 文本:From Word to Sense Embeddings:A Survey on Vector Representations of Meaning[45]

  • 文本:Diachronic Word Embeddings and Semantic Shifts[46]

  • 文本:Word Embeddings: A Survey[47]

  • A Survey on Contextual Embeddings[48]

Meta-learning & Few-shot Learning

  • A Survey on Knowledge Graphs: Representation, Acquisition and Applications[49]

  • Meta-learning for Few-shot Natural Language Processing: A Survey[50]

  • Learning from Few Samples: A Survey[51]

  • Meta-Learning in Neural Networks: A Survey[52]

  • A Comprehensive Overview and Survey of Recent Advances in Meta-Learning[53]

  • Baby steps towards few-shot learning with multiple semantics[54]

  • Meta-Learning: A Survey[55]

  • A Perspective View And Survey Of Meta-learning[56]

其他

  • A Survey on Transfer Learning[57]

本文参考文献

[1]AI-Surveys: https://github.com/KaiyuanGao/AI-Surveys

[2]Recent Trends in Deep Learning Based Natural Language Processing: https://arxiv.org/pdf/1708.02709.pdf

[3]Deep Learning Based Text Classification: A Comprehensive Review: https://arxiv.org/pdf/2004.03705

[4]Survey of the SOTA in Natural Language Generation: Core tasks, applications and evaluation: https://www.jair.org/index.php/jair/article/view/11173/26378

[5]Neural Language Generation: Formulation, Methods, and Evaluation: https://arxiv.org/pdf/2007.15780.pdf

[6]Exploring Transfer Learning with T5: the Text-To-Text Transfer Transformer: https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html

[7]Paper: https://arxiv.org/abs/1910.10683

[8]Neural Transfer Learning for Natural Language Processing: https://aran.library.nuigalway.ie/handle/10379/15463

[9]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

[10]A Survey on Deep Learning for Named Entity Recognition: https://arxiv.org/abs/1812.09449

[11]More Data, More Relations, More Context and More Openness: A Review and Outlook for Relation Extraction: https://arxiv.org/abs/2004.03186

[12]Deep Learning for Sentiment Analysis : A Survey: https://arxiv.org/abs/1801.07883

[13]Deep Learning for Aspect-Level Sentiment Classification: Survey, Vision, and Challenges: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726353

[14]Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering: https://www.aclweb.org/anthology/C18-1328/

[15]Neural Reading Comprehension And Beyond: https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf

[16]Neural Machine Reading Comprehension: Methods and Trends: https://arxiv.org/abs/1907.01118

[17]Neural Machine Translation: A Review: https://arxiv.org/abs/1912.02047

[18]A Survey of Domain Adaptation for Neural Machine Translation: https://www.aclweb.org/anthology/C18-1111.pdf

[19]Pre-trained Models for Natural Language Processing: A Survey: https://arxiv.org/abs/2003.08271

[20]An Attentive Survey of Attention Models: https://arxiv.org/pdf/1904.02874.pdf

[21]An Introductory Survey on Attention Mechanisms in NLP Problems: https://arxiv.org/abs/1811.05544

[22]Attention in Natural Language Processing: https://arxiv.org/abs/1902.02181

[23]A Primer in BERTology: What we know about how BERT works: https://arxiv.org/pdf/2002.12327.pdf

[24]Beyond Accuracy: Behavioral Testing of NLP Models with CheckList: https://arxiv.org/pdf/2005.04118.pdf

[25]Evaluation of Text Generation: A Survey: https://arxiv.org/pdf/2006.14799.pdf

[26]Recommender systems survey: http://irntez.ir/wp-content/uploads/2016/12/sciencedirec.pdf

[27]Deep Learning based Recommender System: A Survey and New Perspectives: https://arxiv.org/pdf/1707.07435.pdf

[28]Are We Really Making Progress? A Worrying Analysis of Neural Recommendation Approaches: https://arxiv.org/pdf/1907.06902.pdf

[29]A Survey of Serendipity in Recommender Systems: https://www.researchgate.net/publication/306075233_A_Survey_of_Serendipity_in_Recommender_Systems

[30]Diversity in Recommender Systems – A survey: https://papers-gamma.link/static/memory/pdfs/153-Kunaver_Diversity_in_Recommender_Systems_2017.pdf

[31]A Survey of Explanations in Recommender Systems: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.9237&rep=rep1&type=pdf

[32]A State-of-the-Art Survey on Deep Learning Theory and Architectures: https://www.mdpi.com/2079-9292/8/3/292/htm

[33]Knowledge Distillation: A Survey: https://arxiv.org/pdf/2006.05525.pdf

[34]Compression of Deep Learning Models for Text: A Survey: https://arxiv.org/pdf/2008.05221.pdf

[35]A Survey on Deep Transfer Learning: https://arxiv.org/pdf/1808.01974.pdf

[36]A Comprehensive Survey of Neural Architecture Search-- Challenges and Solutions: https://arxiv.org/abs/2006.02903

[37]Neural Architecture Search: A Survey: https://arxiv.org/abs/1808.05377

[38]Object Detection in 20 Years: https://arxiv.org/pdf/1905.05055.pdf

[39]Threat of Adversarial Attacks on Deep Learning in Computer Vision: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8294186

[40]Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art: https://arxiv.org/pdf/1704.05519.pdf

[41]A Brief Survey of Deep Reinforcement Learning: https://arxiv.org/pdf/1708.05866.pdf

[42]Transfer Learning for Reinforcement Learning Domains: http://www.jmlr.org/papers/volume10/taylor09a/taylor09a.pdf

[43]Review of Deep Reinforcement Learning Methods and Applications in Economics: https://arxiv.org/pdf/2004.01509.pdf

[44]A Comprehensive Survey of Graph Embedding: Problems, Techniques and Applications: https://arxiv.org/pdf/1709.07604

[45]From Word to Sense Embeddings:A Survey on Vector Representations of Meaning: https://www.jair.org/index.php/jair/article/view/11259/26454

[46]Diachronic Word Embeddings and Semantic Shifts: https://arxiv.org/pdf/1806.03537.pdf

[47]Word Embeddings: A Survey: https://arxiv.org/abs/1901.09069

[48]A Survey on Contextual Embeddings: https://arxiv.org/abs/2003.07278

[49]A Survey on Knowledge Graphs: Representation, Acquisition and Applications: https://arxiv.org/abs/2002.00388

[50]Meta-learning for Few-shot Natural Language Processing: A Survey: https://arxiv.org/abs/2007.09604

[51]Learning from Few Samples: A Survey: https://arxiv.org/abs/2007.15484

[52]Meta-Learning in Neural Networks: A Survey: https://arxiv.org/abs/2004.05439

[53]A Comprehensive Overview and Survey of Recent Advances in Meta-Learning: https://arxiv.org/abs/2004.11149

[54]Baby steps towards few-shot learning with multiple semantics: https://arxiv.org/abs/1906.01905

[55]Meta-Learning: A Survey: https://arxiv.org/abs/1810.03548

[56]A Perspective View And Survey Of Meta-learning: https://www.researchgate.net/publication/2375370_A_Perspective_View_And_Survey_Of_Meta-Learning

[57]A Survey on Transfer Learning: http://202.120.39.19:40222/wp-content/uploads/2018/03/A-Survey-on-Transfer-Learning.pdf

作者:kaiyuan,来源:NewBeeNLP文章来源地址https://www.toymoban.com/news/detail-452304.html

到了这里,关于各机器学习领域综述清单!的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【人工智能】机器学习算法综述及常见算法详解

    目录 推荐 1、机器学习算法简介 1.1 机器学习算法包含的两个步骤 1.2 机器学习算法的分类 2、线性回归算法 2.1 线性回归的假设是什么? 2.2 如何确定线性回归模型的拟合优度? 2.3 如何处理线性回归中的异常值? 3、逻辑回归算法 3.1 什么是逻辑函数? 3.2 逻辑回归可以用于多类

    2024年04月22日
    浏览(44)
  • 机器学习笔记之生成模型综述(一)生成模型介绍

    从本节开始,将介绍 生成模型 的相关概念。 生成模型,单从名字角度,可以将其认识为: 生成样本的模型 。从流程的角度,它可以理解为: 给定一个 数据集合 ,基于该数据集合进行建模,并通过 数据集合 学习出模型的参数信息; 根据已学习出的 参数信息 ,使用模型构

    2024年02月05日
    浏览(37)
  • 《零基础实践深度学习》(第2版)学习笔记,(二)机器学习和深度学习综述

    **人工智能(Artificial Intelligence,AI)**是研发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 **机器学习(Machine Learning,ML)**是当前比较有效的一种实现人工智能的方式。 **深度学习(Deep Learning,DL)**是机器学习算法中最热门的一个分

    2024年02月13日
    浏览(39)
  • 机器学习洞察 | JAX,机器学习领域的“新面孔”

    在之前的《机器学习洞察》系列文章中,我们分别针对于多模态机器学习和分布式训练、无服务器推理进行了解读,本文将为您重点介绍 JAX 的发展并剖析其演变和动机。下面,就让我们来认识一下 JAX 这一新崛起的深度学习框架—— 亚马逊云科技开发者社区为开发者们提供

    2024年02月12日
    浏览(34)
  • ChatDoctor:一个基于微调LLaMA模型用于医学领域的医学聊天机器人

    ChatDoctor:一个基于微调LLaMA模型用于医学领域的医学聊天机器人 https://www.yunxiangli.top/ChatDoctor/ Demo.自动聊天医生与疾病数据库演示。 HealthCareMagic-100k.100k患者和医生之间的真实的对话HealthCareMagic.com。 icliniq-10k.患者和医生之间的真实的对话来自icliniq.com icliniq-10 k。 link.ChatDoct

    2024年02月13日
    浏览(49)
  • 【NM 2019】综述:基于机器学习引导的定向进化蛋白质工程

    Machine-learning-guided directed evolution for protein engineering | Nature Methods Machine-learning-guided directed evolution for protein engineering 机器学习引导的定向进化蛋白质工程  图1 | 带和不带机器学习的定向进化。 a)定向进化利用迭代循环的多样性生成和筛选来找到改进的变体。未改进的变体的信

    2024年02月11日
    浏览(37)
  • Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用

    Python是功能强大、免费、开源,实现面向对象的编程语言,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面具备优异的性能,这些优势使得Python在气象、海洋、地理、气候、水文和生态等地学领域的科研和工程项目中得到广泛应用。可以预见未来Python将成为的

    2023年04月23日
    浏览(50)
  • 基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力

    查看原文 基于Python机器学习、深度学习技术提升气象、海洋、水文领域实践应用能力 目录 专题一、Python软件的安装及入门 专题二、气象常用科学计算库 专题三、气象海洋常用可视化库 专题四、爬虫和气象海洋数据 专题五、气象海洋常用插值方法 专题六、机器学习基础理

    2023年04月21日
    浏览(64)
  • 探索Go语言在机器学习领域的应用局限与前景

    🌷🍁 博主猫头虎 带您 Go to New World.✨🍁 🦄 博客首页——猫头虎的博客🎐 🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺 🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐 🌊 《100天精通Golang(基础入门篇)》学会Golang语言

    2024年02月14日
    浏览(45)
  • 语音识别与语音合成:机器学习在音频处理领域的应用

    语音识别和语音合成是人工智能领域的两个重要应用,它们在日常生活和工作中发挥着越来越重要的作用。语音识别(Speech Recognition)是将语音信号转换为文本信息的技术,而语音合成(Text-to-Speech Synthesis)是将文本信息转换为语音信号的技术。这两个技术的发展与机器学习紧密相

    2024年02月21日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包