CloudCompare二次开发之如何通过PCL进行点云分割?

这篇具有很好参考价值的文章主要介绍了CloudCompare二次开发之如何通过PCL进行点云分割?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0.引言

  因笔者课题涉及点云处理,需要通过PCL进行点云数据一系列处理分析,查阅现有网络资料,对常用PCL点云分割进行代码实现,本文记录分割实现过程。

1.CloudCompare界面设计配准(segment)按钮

  (1)设计.ui文件
  ①设计按钮
  CloudCompare二次开发之如何通过PCL进行点云分割?

  ②编译.ui
  CloudCompare二次开发之如何通过PCL进行点云分割?

  (2)修改mainwindow.h文件
  CloudCompare二次开发之如何通过PCL进行点云分割?

//点云分割
void doActionPCLEuclidean_Seg(); // 欧式聚类分割  
void doActionPCLRegion_Seg(); // 基于区域生长的分割

  (3)修改mainwindow.cpp文件
  ①添加头文件
  CloudCompare二次开发之如何通过PCL进行点云分割?

#include <pcl/ModelCoefficients.h>
#include <pcl/sample_consensus/method_types.h>//模型定义头文件  
#include <pcl/sample_consensus/model_types.h>//随机参数估计方法头文件  
#include <pcl/segmentation/sac_segmentation.h>//基于采样一致性分割的类的头文件  
#include <pcl/segmentation/extract_clusters.h>  
#include <pcl/segmentation/region_growing.h>//区域生成分割的头文件  
#include <pcl/filters/extract_indices.h>

  ②添加实现代码
  CloudCompare二次开发之如何通过PCL进行点云分割?

//欧式聚类分割
void MainWindow::doActionPCLEuclidean_Seg()  
{  
}  
//基于区域生长的分割  
void MainWindow::PCLRegion_Seg()  
{  
}

  ③添加信号槽函数
  CloudCompare二次开发之如何通过PCL进行点云分割?

connect(m_UI->actionEuclidean_Seg, &amp;QAction::triggered, this, &amp;MainWindow::doActionPCLEuclidean_Seg);//欧式聚类分割
connect(m_UI->actionRegion_Seg, &amp;QAction::triggered, this, &amp;MainWindow::doActionPCLRegion_Seg);//基于区域生长的分割

  (4)生成
  CloudCompare二次开发之如何通过PCL进行点云分割?

2.欧式聚类分割(Euclidean_Seg)

  (1)实现代码

//欧式聚类分割
void MainWindow::doActionPCLEuclidean_Seg()  
{  
    if (getSelectedEntities().size() != 1)  
    {  
        ccLog::Print(QStringLiteral("只能选择一个点云实体"));  
    return;  
    }  
    ccHObject* entity = getSelectedEntities()[0];  
    ccPointCloud* ccCloud = ccHObjectCaster::ToPointCloud(entity);  
    // ---------------------------读取数据到PCL----------------------------------  
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);  
    cloud->resize(ccCloud->size());  
    pcl::PointCloud<pcl::PointNormal>::Ptr incloud(new pcl::PointCloud <pcl::PointNormal>());  
    for (int i = 0; i < cloud->size(); ++i)  
    {  
        const CCVector3* point = ccCloud->getPoint(i);  
        cloud->points[i].x = point->x;  
        cloud->points[i].y = point->y;  
        cloud->points[i].z = point->z;  
    pcl::PointNormal pt;  
    pt.x = point->x;  
    pt.y = point->y;  
    pt.z = point->z;  
    incloud->points.push_back(pt);  
    }  
    pcl::VoxelGrid<pcl::PointXYZ> vg;  
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);  
    vg.setInputCloud(cloud);  
    vg.setLeafSize(0.05f, 0.05f, 0.05f);  
    vg.filter(*cloud_filtered);  
    pcl::SACSegmentation<pcl::PointXYZ> seg;//实例化一个分割对象  
    pcl::PointIndices::Ptr inliers(new pcl::PointIndices);//实例化一个索引  
    pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);//实例化模型参数  
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ>());//提取到的平面保存至cloud_plane  
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f(new pcl::PointCloud<pcl::PointXYZ>());//提取到的平面保存至cloud_plane  
    //pcl::PCDWriter writer;  
    seg.setOptimizeCoefficients(true);//参数优化  
    seg.setModelType(pcl::SACMODEL_PLANE);//模型类型:平面  
    seg.setMethodType(pcl::SAC_RANSAC);//参数估计方法  
    seg.setMaxIterations(100);//最大迭代次数  
    seg.setDistanceThreshold(0.02);//设置内点到模型的距离允许最大值  
    //创建一个文件夹来放点云  
    ccHObject* CloudGroup = new ccHObject(QString("SegmentGroup"));  
    int i = 0, nr_points = (int)cloud_filtered->points.size();//计数变量i,记下提取的平面的个数  
    dispToConsole("cloud_filtered->points.size()1:" + QString::number(cloud_filtered->points.size()), ccMainAppInterface::STD_CONSOLE_MESSAGE);  
    while (cloud_filtered->points.size() > 0.3 * nr_points)  
    {  
    // Segment the largest planar component from the remaining cloud  
    seg.setInputCloud(cloud_filtered);//设置要分割的点云  
    seg.segment(*inliers, *coefficients);//输出平面点的索引和参数  
    // Extract the planar inliers from the input cloud  
    pcl::ExtractIndices<pcl::PointXYZ> extract;//实例化一个提取对象  
    extract.setInputCloud(cloud_filtered);//设置要提取的点云  
    extract.setIndices(inliers);//根据分割得到的平面的索引提取平面  
    extract.setNegative(false);//提取内点  
      // Write the planar inliers to disk  
    extract.filter(*cloud_plane);//保存提取到的平面  
    //std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;  
    //存写指针的参数  
    cloud_plane->width = cloud_plane->points.size();  
    cloud_plane->height = 1;  
    cloud_plane->resize(cloud_plane->width);  
    cloud_plane->is_dense = false;  
    ccPointCloud* newPointCloud = new ccPointCloud(QString::number(i + 1) + ".1segment");  
    for (int i = 0; i < cloud_plane->size(); ++i)  
    {  
        double x = cloud_plane->points[i].x;  
        double y = cloud_plane->points[i].y;  
        double z = cloud_plane->points[i].z;  
        newPointCloud->addPoint(CCVector3(x, y, z));  
    }  
    newPointCloud->setRGBColor(ccColor::Rgba(255, 100, 100, 255));  
    newPointCloud->setRGBColor(ccColor::Rgba(rand() % 205 + 50, rand() % 155 + 100, rand() % 105 + 150, 255));  
    newPointCloud->showColors(true);  
    CloudGroup->addChild(newPointCloud);  
    //CloudGroup->getLastChild()->setEnabled(false);  
    addToDB(newPointCloud);  
    //计数变量加1  
    i++;  
    // Remove the planar inliers, extract the rest  
    extract.setNegative(true);//提取外点(除第一个平面之外的点)  
    extract.filter(*cloud_f);//保存除平面之外的剩余点  
    cloud_filtered = cloud_f;//将剩余点作为下一次分割、提取的平面的输入点云  
    }  
    // Creating the KdTree object for the search method of the extraction  
    pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);  
    tree->setInputCloud(cloud_filtered);//将无法提取平面的点云作为cloud_filtered  
    std::vector<pcl::PointIndices> cluster_indices;//保存每一种聚类,每一种聚类下还有具体的聚类的点  
    pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;//实例化一个欧式聚类提取对象  
    ec.setClusterTolerance(0.02); // 近邻搜索的搜索半径为2cm,重要参数  
    ec.setMinClusterSize(100);//设置一个聚类需要的最少点数目为100  
    ec.setMaxClusterSize(25000);//一个聚类最大点数目为25000  
    ec.setSearchMethod(tree);//设置点云的搜索机制  
    ec.setInputCloud(cloud_filtered);//设置输入点云  
    ec.extract(cluster_indices);//将聚类结果保存至cluster_indices中  
    //迭代访问点云索引cluster_indices,直到分割出所有聚类,一个循环提取出一类点云  
    int j = 0;  
    for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)  
    {  
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);  
        //创建新的点云数据集cloud_cluster,直到分割出所有聚类  
        for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); pit++)  
            cloud_cluster->points.push_back(cloud_filtered->points[*pit]); //*  
  
        cloud_cluster->width = cloud_cluster->points.size();  
        cloud_cluster->height = 1;  
        cloud_cluster->is_dense = true;  
        ccPointCloud* newPointCloud = new ccPointCloud(QString::number(i + 1) + ".2segment");  
        for (int i = 0; i < cloud_cluster->size(); ++i)  
        {  
            double x = cloud_cluster->points[i].x;  
            double y = cloud_cluster->points[i].y;  
            double z = cloud_cluster->points[i].z;  
            newPointCloud->addPoint(CCVector3(x, y, z));  
        }  
        newPointCloud->setRGBColor(ccColor::Rgba(255, 255, 255, 255));  
        newPointCloud->showColors(true);  
    CloudGroup->addChild(newPointCloud);  
    CloudGroup->getLastChild()->setEnabled(false);  
    addToDB(newPointCloud);  
    j++;  
    }  
    m_ccRoot->addElement(CloudGroup);  
}

  (2)分割结果
  ①分割前
  CloudCompare二次开发之如何通过PCL进行点云分割?

  ②分割后
  CloudCompare二次开发之如何通过PCL进行点云分割?

3.基于区域生长的分割(Region_Seg)

  (1)实现代码

//基于区域生长的分割
void MainWindow::doActionPCLRegion_Seg()  
{  
    if (getSelectedEntities().size() != 1)  
    {  
        ccLog::Print(QStringLiteral("只能选择一个点云实体"));  
    return;  
    }  
    ccHObject* entity = getSelectedEntities()[0];  
    ccPointCloud* ccCloud = ccHObjectCaster::ToPointCloud(entity);  
    // ---------------------------读取数据到PCL----------------------------------  
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);  
    cloud->resize(ccCloud->size());  
    pcl::PointCloud<pcl::PointNormal>::Ptr incloud(new pcl::PointCloud <pcl::PointNormal>());  
    for (int i = 0; i < cloud->size(); ++i)  
    {  
        const CCVector3* point = ccCloud->getPoint(i);  
        cloud->points[i].x = point->x;  
        cloud->points[i].y = point->y;  
        cloud->points[i].z = point->z;  
    pcl::PointNormal pt;  
    pt.x = point->x;  
    pt.y = point->y;  
    pt.z = point->z;  
    incloud->points.push_back(pt);  
    }  
    int KN_normal = 50; //设置默认输入参数  
    bool Bool_Cuting = false;//设置默认输入参数  
    float far_cuting = 10, near_cuting = 0, SmoothnessThreshold = 30.0, CurvatureThreshold = 0.05;//设置默认输入参数  
    pcl::search::Search<pcl::PointXYZ>::Ptr tree = boost::shared_ptr<pcl::search::Search<pcl::PointXYZ> >(new pcl::search::KdTree<pcl::PointXYZ>);//创建一个指向kd树搜索对象的共享指针  
    pcl::PointCloud <pcl::Normal>::Ptr normals(new pcl::PointCloud <pcl::Normal>);  
    pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;//创建法线估计对象  
    normal_estimator.setSearchMethod(tree);//设置搜索方法  
    normal_estimator.setInputCloud(cloud);//设置法线估计对象输入点集  
    normal_estimator.setKSearch(KN_normal);// 设置用于法向量估计的k近邻数目  
    normal_estimator.compute(*normals);//计算并输出法向量  
    // 区域生长算法的5个参数  
    pcl::RegionGrowing<pcl::PointXYZ, pcl::Normal> reg;//创建区域生长分割对象  
    reg.setMinClusterSize(50);//设置一个聚类需要的最小点数  
    reg.setMaxClusterSize(1000000);//设置一个聚类需要的最大点数  
    reg.setSearchMethod(tree);//设置搜索方法  
    reg.setNumberOfNeighbours(30);//设置搜索的临近点数目  
    reg.setInputCloud(cloud);//设置输入点云  
    reg.setInputNormals(normals);//设置输入点云的法向量  
    reg.setSmoothnessThreshold(SmoothnessThreshold / 180.0 * M_PI);//设置平滑阈值  
    reg.setCurvatureThreshold(CurvatureThreshold);//设置曲率阈值  
    std::vector <pcl::PointIndices> clusters;//保存每一种聚类,每一种聚类下面还有具体的点  
    reg.extract(clusters);//获取聚类的结果,分割结果保存在点云索引的向量中。  
    //创建一个文件夹来放点云  
    ccHObject* CloudGroup = new ccHObject(QString("SegmentGroup"));  
    for (size_t i = 0; i < clusters.size(); i++)  
    {  
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_seg1(new pcl::PointCloud<pcl::PointXYZ>);  
        for (std::vector<int>::const_iterator pit = clusters[i].indices.begin(); pit != clusters[i].indices.end(); pit++)//创建一个迭代器pit以访问第一个聚类的每一个点  
        {  
            cloud_seg1->points.push_back(cloud->points[*pit]);//迭代器pit类似于一个指针,将第一个聚类分割中的每一个点进行强制类型转换,并放置在points中  
        }  
        cloud_seg1->width = cloud_seg1->points.size();  
        cloud_seg1->height = 1;  
        cloud_seg1->is_dense = false;  
    ccPointCloud* newPointCloud = new ccPointCloud(QString::number(i + 1) + ".Region_Seg");  
    for (int i = 0; i < cloud_seg1->size(); ++i)  
    {  
        double x = cloud_seg1->points[i].x;  
        double y = cloud_seg1->points[i].y;  
        double z = cloud_seg1->points[i].z;  
        newPointCloud->addPoint(CCVector3(x, y, z));  
    }  
    //newPointCloud->setRGBColor(ccColor::Rgba(100, 255, 100, 255));  
    newPointCloud->setRGBColor(ccColor::Rgba(rand() % 105 + 150, rand() % 155 + 100, rand() % 205 + 50, 255));  
    newPointCloud->showColors(true);  
    CloudGroup->addChild(newPointCloud);  
    //CloudGroup->getLastChild()->setEnabled(false);  
    addToDB(newPointCloud);  
    }  
    m_ccRoot->addElement(CloudGroup);  
}

  (2)分割结果
  ①分割前
  CloudCompare二次开发之如何通过PCL进行点云分割?

  ②分割后
  CloudCompare二次开发之如何通过PCL进行点云分割?

参考资料:
[1] 来吧!我在未来等你!. CloudCompare二次开发之如何配置PCL点云库?; 2023-05-15 [accessed 2023-05-17].
[2] Tech沉思录. PCL 【点云分割】; 2019-08-17 [accessed 2023-05-17].
[3] 步子小不扯淡. PCL: Segmentation模块之SACSegmentation点云分割; 2014-09-07 [accessed 2023-05-17].
[4] SOC罗三炮. PCL教程-点云分割之区域生长分割算法; 2023-01-08 [accessed 2023-05-17].
[5] 悠缘之空. PCL函数库摘要——点云分割; 2021-11-07 [accessed 2023-05-17].文章来源地址https://www.toymoban.com/news/detail-452400.html

到了这里,关于CloudCompare二次开发之如何通过PCL进行点云分割?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CloudCompare插件开发之如何将点云文件打开、处理并显示?

      CloudCompaer是一款优秀的开源软件,在点云处理时可以根据实际要求开发合适的插件,本文需求是将点云文件打开、处理并显示,网上资源可以找到点云简单处理和显示的代码,但对于文件打开的源代码几乎没有,本文通过查阅大量资料和研究源代码实现了点云文件打开,

    2024年02月11日
    浏览(46)
  • CloudCompare二次开发之如何设计界面ui与功能实现?

      CloudCompare源代码编译成功后,即可进行二次开发,可以通过修改源码实现二次开发,二次开发基础功能见(CloudCompare如何进行二次开发?),若想要实现更多自定义功能,可以自定义界面ui,并操作CloudCompare程序处理数据。本文讲解界面ui设计,修改相应的文件,使Cloud

    2023年04月20日
    浏览(38)
  • 点云分割-pcl区域生长算法

    1、本文内容 pcl的区域生长算法的使用和原理 2、平台/环境 cmake, pcl 3、转载请注明出处: https://blog.csdn.net/qq_41102371/article/details/131927376 参考:https://pcl.readthedocs.io/projects/tutorials/en/master/region_growing_segmentation.html#region-growing-segmentation https://blog.csdn.net/taifyang/article/details/124097186

    2024年02月15日
    浏览(38)
  • PCL 建筑物点云立面和平面分割提取

      在建筑物点云中,立面点和平面点的法向量存在明显的差异,根据法向量在Z方向的分量设置相应得阈值即可实现立面点与平面点的分割。

    2024年02月06日
    浏览(37)
  • CloudCompare 二次开发(20)——二次曲面拟合

    本文由CSDN点云侠原创,原文链接。爬虫网站自重。   由CloudCompare——点云二次曲面拟合一文知:CloudCompare软件中的已经集成了二次曲面拟合功能,但是计算出来的拟合参数是不正确的。因此,本文在原有算法的基础上进行修改,使输出的参数结果正确。 mainwindow.cpp 文件

    2024年02月06日
    浏览(48)
  • 使用PCL库中PPF+ICP进行点云目标识别

    在使用过程中踩到的坑:    (1):PointCloudPPFSignature::Ptr cloud_model_ppf(new PointCloudPPFSignature());     PPFEstimationPointNormal, PointNormal, PPFSignature ppf_estimator;     ppf_estimator.setInputCloud(cloud_model_input);     ppf_estimator.setInputNormals(cloud_model_input);     ppf_estimator.compute(*cloud_model_ppf); 运行到

    2024年02月15日
    浏览(69)
  • CloudCompare 二次开发(6)——插件中拖拽添加Qt窗口(区域生长算法为例)

    本文由CSDN点云侠原创,原文链接。爬虫网站自重。   手动拖拽的方式搭建Qt对话框界面的制作流程,以PCL中的点云区域生长算法为例进行制作。 1、将 ....pluginsexample 路径下的 ExamplePlugin 复制一份并修改名字为 CCPointCloudProcess 。 2、创建窗口UI文件 使用任意Qt工程新建对话

    2023年04月11日
    浏览(52)
  • VisualStudio如何配置PCL点云库?

      因笔者课题涉及点云处理,需要通过PCL进行点云数据分析处理,查阅现有网络资料,实现了VisualStudio2015(x86)配置PCL1.8.1点云库,本文记录实现配置的过程。    (1)下载PCL   下载地址: https://github.com/PointCloudLibrary/pcl/releases/tag/pcl-1.8.1   笔者的VS软件为32位的VS2015,

    2024年02月06日
    浏览(44)
  • CloudCompare——CANUPO点云分类

      CANUPO插件是一种自动分类点云的简单而有效的方法。它允许用户创建自己的分类器(通过在小样本上训练它们)和/或在点云上一次应用一个分类器,以便将其分成两个子集。它还为每个点输出分类置信度值,以便用户可以快速识别有问题的案例(问题一般出现在边界上)

    2024年02月12日
    浏览(35)
  • QT6+CloudCompare显示3D点云

        CloudCompare是一个三维点云(网格)编辑和处理软件。最初,它被设计用来对稠密的三维点云进行直接比较。它依赖于一种特定的八叉树结构,在进行点云对比这类任务时具有出色的性能。此外,由于大多数点云都是由地面激光扫描仪采集的,CloudCompare的目的是在一台标准

    2023年04月08日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包