CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

这篇具有很好参考价值的文章主要介绍了CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        在Hadoop集群swarm部署的基础上,我们更进一步,把Spark也拉进来。相对来说,在Hadoop搞定的情况下,Spark就简单多了。

        一、下载Spark   

         之所以把这件事还要拿出来讲……当然是因为掉过坑。我安装的时候,hadoop是3.3.5,所以spark下载这个为hadoop 3.3 预编译的版本就好——一定要把版本对准了。然而,这个版本实际是打包了hadoop环境的,spark还提供了不包含hadoop环境的预编译包,也就是所谓 user provide hadoop的版本。

        由于我之前已经安装好了hadoop,所以为了避免jar包使用可能造成的冲突,我在spark大部分的配置完成的情况下又切换到了no hadoop版本。然后就是spark HA启动时,所有的master都处于standby状态。故障现场是懒得恢复了。总之,检查后发现是pignode没有办法连接上zookeeper。首先当然排除是网络及zookeeper的问题,因为hadoop HA工作正常。经过一番折腾,发现原因在spark访问zookeeper的方式,是通过curator封装的,然后这个curator在hadoop中似乎是没有提供的-或者版本不对,总之就是会出现java找不到函数的错误——java.lang.NoSuchMethodError。

        估计是因为我选择的spark木有自带的java环境,而使用hadoop的java环境又没有spark想要的东西。总之一通折腾也没解决,最后还是换回包含hadoop环境的版本,就完美了。暂时也没发现又啥冲突的地方,就先用着吧。

        二、Spark的配置文件

        spark的配置要相对简单很多,要求不高的话,只需要配置一下全局环境变量,和spark-env.sh文件即可。

        (一)全局环境变量 

#定义SPARK_HOME环境变量,并把bin目录加到目录中,其实最好sbin也加进去的好,到处都会用到
RUN  echo -e "export SPARK_HOME=/root/spark \nexport PATH=\$PATH:\$SPARK_HOME/bin">>/root/.bashrc\
#如果不定义如下LD_LIBRARY_PATH中的Java环境,在启动spark-shell的时候会出现警告,当然心大不搭理也可以
&&  echo -e "export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$HADOOP_HOME/lib/native">>/root/.bashrc\

        (二)spark配置项

        在$SPARK_HOME/conf中的spark-env.conf文件中,定义如下配置项,主要就是数据存放目录,配置文件存放目录,和java类库之类的存放目录。

        当然,对于HA部署,重要的时指定zookeeper的地址。如果不用HA模式的话,指定SPARK_MASTER_HOST就行。

#!/usr/bin/env bash

# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
#指向HADOOP的配置文件所在的目录
HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program

# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
#指向spark本地数据文件的存储地,因为我们使用容器,需要映射,所以把它定义出来
SPARK_LOCAL_DIRS=/sparkdata
# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos

# Options read in any mode
# - SPARK_CONF_DIR, Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_EXECUTOR_CORES, Number of cores for the executors (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Executor (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Driver (e.g. 1000M, 2G) (Default: 1G)

# Options read in any cluster manager using HDFS
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files

# Options read in YARN client/cluster mode
# - YARN_CONF_DIR, to point Spark towards YARN configuration files when you use YARN
#指向YARN的配置文件所在目录,其实也就是Hadoop的配置文件目录
YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop

# Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_HOST, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master
# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_DAEMON_CLASSPATH, to set the classpath for all daemons
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers
# 该参数用来定义spark HA。只需要将zookeeper.url指向我们自己的zookeeper集群地址就好
SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=zookeeper1:2181,zookeeper2:2181,zookeeper3:2181 -Dspark.deploy.zookeeper.dir=/spark"

# Options for launcher
# - SPARK_LAUNCHER_OPTS, to set config properties and Java options for the launcher (e.g. "-Dx=y")

# Generic options for the daemons used in the standalone deploy mode
# - SPARK_CONF_DIR      Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_LOG_DIR       Where log files are stored.  (Default: ${SPARK_HOME}/logs)
# - SPARK_LOG_MAX_FILES Max log files of Spark daemons can rotate to. Default is 5.
# - SPARK_PID_DIR       Where the pid file is stored. (Default: /tmp)
# - SPARK_IDENT_STRING  A string representing this instance of spark. (Default: $USER)
# - SPARK_NICENESS      The scheduling priority for daemons. (Default: 0)
# - SPARK_NO_DAEMONIZE  Run the proposed command in the foreground. It will not output a PID file.
# Options for native BLAS, like Intel MKL, OpenBLAS, and so on.
# You might get better performance to enable these options if using native BLAS (see SPARK-21305).
# - MKL_NUM_THREADS=1        Disable multi-threading of Intel MKL
# - OPENBLAS_NUM_THREADS=1   Disable multi-threading of OpenBLAS

# Options for beeline
# - SPARK_BEELINE_OPTS, to set config properties only for the beeline cli (e.g. "-Dx=y")
# - SPARK_BEELINE_MEMORY, Memory for beeline (e.g. 1000M, 2G) (Default: 1G)

#这个参数在使用no hadoop版本的spark时会用到,也就是会造成curator找不到函数的地方
#export SPARK_DIST_CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath)

        三、Dockerfile文件

        由于所有的工作都建立在前面已经构建好的pig/hadoop:ha镜像的基础上:CENTO OS上的网络安全工具(二十一)Hadoop HA swarm容器化集群部署,所以也就没啥多说的,贴吧:        

FROM pig/hadoop:ha

#将spark安装包释放到容器中,并修改一个好用的名字
#PS:所谓改名,到后面出问题的时候感觉其实不改更好,能够更直观的看到版本号
ADD spark-3.4.0-bin-hadoop3.tgz /root
RUN mv /root/spark-3.4.0-bin-hadoop3 /root/spark

#设置Spark的全局变量
RUN echo -e "export SPARK_HOME=/root/spark \nexport PATH=\$PATH:\$SPARK_HOME/bin">>/root/.bashrc
RUN echo -e "export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$HADOOP_HOME/lib/native">>/root/.bashrc

#离线安装python3,离线方法就不多赘述了,把所有rpm整下来,一把yum localinstall了
COPY ./pythonrpm /root/pythonrpm
RUN yum localinstall -y /root/pythonrpm/*.rpm \
&&  rm -rf /root/pythonrpm

#拷贝初始化脚本,后来为了方便修改调试起见,改成了映射的版本
COPY ./init-spark.sh /root/.

##默认启动脚本
CMD ["/root/init-spark.sh"]

        四、初始化脚本

#! /bin/bash
# NODE_COUT和ZOOKEEPER_COUNT两个参数通过swarm config yml文件设置(只在第一个节点有用,用于判断是否所有节点都联通), 在yml文件中的endpoint_environment标识中定义。
NODECOUNT=$NODE_COUNT
TRYLOOP=50
ZOOKEEPERNODECOUNT=$ZOOKEEPER_COUNT

############################################################################################################
##   1. 使全局变量生效
############################################################################################################
source /etc/profile
source /root/.bashrc

############################################################################################################
##   2. 启动所有节点的SSH服务,其实也可以直接调用pig/hadoop:ha中的init-hadoop.sh
,不过我们都快写完了才反应过来############################################################################################################
/sbin/sshd -D &

############################################################################################################
##   3. 内部函数定义
############################################################################################################

#FUNCTION:PING 测试是否所有节点都已经上线准备好------------------------------------------------------------
#param1: node's hostname prefix
#param2: node count
#param3: how many times the manager node try connect
isAllNodesConnected(){
	PIGNODE_PRENAME=$1
	PIGNODE_COUNT=$2
	TRYLOOP_COUNT=$3
	tryloop=0
	ind=1
	#init pignode hostname array,and pignode status array
	while(( $ind <= $PIGNODE_COUNT ))
	do
		pignodes[$ind]="$PIGNODE_PRENAME$ind"
		pignodes_stat[$ind]=0
		let "ind++"
	done
	
	#check wether all the pignodes can be connected
	noactivecount=$PIGNODE_COUNT
	while(( $noactivecount > 0 ))
	do
		noactivecount=$PIGNODE_COUNT
		ind=1
		while(( $ind <= $PIGNODE_COUNT ))
		do
			if (( ${pignodes_stat[$ind]}==0 ))
			then
				ping -c 1 ${pignodes[$ind]} > /dev/null
				if (($?==0))
				then
					pignodes_stat[$ind]=1
					let "noactivecount-=1"
					echo "Try to connect ${pignodes[$ind]}:successed." >>init.log
				else
					echo "Try to connect ${pignodes[$ind]}: failed." >>init.log
				fi
			else
				let "noactivecount-=1"
			fi
			let "ind++"
		done
		if (( ${noactivecount}>0 ))
		then
			let "tryloop++"
			if (($tryloop>$TRYLOOP_COUNT))
			then
				echo "ERROR Tried ${TRYLOOP_COUNT} loops. ${noactivecount} nodes failed, exit." >>init.log
				break;
			fi
			echo "${noactivecount} left for ${PIGNODE_COUNT} nodes not connected, waiting for next try">>init.log
			sleep 5
		else
			echo "All nodes are connected.">>init.log
		fi
	done
	return $noactivecount
}
#----------------------------------------------------------------------------------------------------------

#FUNCTION:从配置文件中读取Hadoop的数据文件目录,用于判断节点是否已经格式化--------------------------------------------------------------------
getDataDirectory(){
#when use tmp data directory
#        configfiledir=`echo "${HADOOP_HOME}/etc/hadoop/core-site.xml"`
#        datadir=`cat ${configfiledir} | grep -A 2 'hadoop.tmp.dir' | grep '<value>' | sed 's/^[[:blank:]]*<value>//g' | sed 's/<\/value>$//g'`
#        echo $datadir

#when use namenode.name.dir direcotry
	datadir=`cat ${HADOOP_HOME}/etc/hadoop/hdfs-site.xml|grep -A 2 "dfs.namenode.name.dir"|grep "<value>"|sed -e "s/<value>//g"|sed -e "s/<\/value>//g"`
	echo $datadir
}
#---------------------------------------------------------------------------------------------------------

#FUNCTION:如果DFS文件系统尚未格式化,启用格式化的初始化流程.------------------------------------------------------------
initHadoop_format(){
	#首先需要启动Journalnode,提供名字服务器同步元数据的通道
	echo 'start all Journalnode' >> init.log
	journallist=`cat $HADOOP_HOME/etc/hadoop/hdfs-site.xml |grep -A 2 'dfs.namenode.shared.edits.dir'|grep '<value>'|sed -e "s/<value>qjournal:\/\/\(.*\)\/.*<\/value>/\1/g"|sed "s/;/ /g"|sed -e "s/:[[:digit:]]\{2,5\}/ /g"`
	for journalnode in $journallist;do
		ssh root@${journalnode} "hdfs --daemon start journalnode"
	done

	#等待15秒,之前没有等,容易导致journalnode还未打开端口就开始格式化,导致格式化失败,浪费一个周六……
	echo 'waiting 15 seconds for journal nodes started. or format will fail as journalnode can not be connected.'>>init.log
	wait 15s
	echo 'format and start namenode 1'>>init.log
	hdfs namenode -format
	if (( $?!=0 )); then
		echo 'format namenode 1 error'>>init.log
		return 1
	fi
    #启动主节点上的名字服务器(一共3个,启动第1个)
	wait 3s
	hdfs --daemon start namenode
	if (( $?!=0 )); then
		echo 'start namenode 1 error'>>init.log
		return 1
	fi

	#必须等第1个名字服务器启动了,才能将其上的数据向其它名字服务器同步
	echo 'sync and start others.'>>init.log
	wait 3s
	dosyncid=2
	while (($dosyncid<=3));do
        #依次同步2、3号名字服务器
		ssh root@$nodehostnameprefix$dosyncid "hdfs namenode -bootstrapStandby"
		if (( $?!=0 )); then
			echo 'namenode bootstrap standby error'>>init.log
			return 1
		fi
        #同步完成及时启动
		ssh root@$nodehostnameprefix$dosyncid "hdfs --daemon start namenode"
		if (( $?!=0 )); then
			echo 'other namenodes start error'>>init.log
			return 1
		fi
		let "dosyncid++"
	done
	
	wait 3s
	#格式化zookeeper上的目录,在没启动这一步时,所有的hadoop节点都是standby
	hdfs zkfc -formatZK
	return 0
}
#---------------------------------------------------------------------------------------------------------

#FUNCTION:如果DFS已经格式化,只需要启动各类服务就行-----------------------------------------------------------------
initHadoop_noformat(){
    #直接启动所有与dfs有关的服务,基于官方脚本可以启动所有节点上的hdfs服务
	echo 'name node formatted. go on to start dfs related nodes and service'>>init.log
	sbin/start-dfs.sh
	if (( $?!=0 )); then
		echo 'start dfs error'>>init.log
		return 1
	fi

    #直接启动所有与yarn有关的服务,基于官方脚本可以启动所有节点上的yarn服务
	wait 5s
	echo 'start yarn resourcemanager and node manager'>>init.log
	sbin/start-yarn.sh
	if (( $?!=0 )); then
		echo 'start yarn error'>>init.log
		return 1
	fi

    #获取history server节点hostname,远程启动history server
	wait 3s
	echo 'start mapreduce history server'>>init.log
	historyservernode=`cat $HADOOP_HOME/etc/hadoop/mapred-site.xml |grep -A 2 'mapreduce.jobhistory.address'|grep '<value>' |sed -e "s/^.*<value>//g"|sed -e "s/<\/value>//g"|sed -e "s/:[[:digit:]]*//g"`
	ssh root@$historyservernode "mapred --daemon start historyserver"
	if (( $?!=0 )); then
		echo 'start mapreduce history server error'>>init.log
		return 1
	fi
	return 0
}
#----------------------------------------------------------------------------------------------------------

#FUNCTION:退出初始化程序,使用挂住线程的方法,防止swarm shutdown--------------------------------------------------------------------------------
exitinit()
{
	tail -f /dev/null
}
#----------------------------------------------------------------------------------------------------------

############################################################################################################
##   节点初始化程序                                                               ##
############################################################################################################
#获取节点hostname,hostname的前缀和节点序号
#这里刚开始没有考虑好,应该直接从配置文件中获取相应角色的hostname,可以使程序更健壮些
#以后有时间再迭代吧,先这么着了
nodehostname=`hostname`
nodehostnameprefix=`echo $nodehostname|sed -e 's|[[:digit:]]\+$||g'`
nodeindex=`hostname | sed "s/${nodehostnameprefix}//g"`

#从配置文件中获取zookeeper集群hostname前缀,从yarn-site.xml,用来调用测试是否所有节点上线的函数
zookeepernameprefix=`cat ${HADOOP_HOME}/etc/hadoop/yarn-site.xml |grep -A 2 '<name>yarn.resourcemanager.zk-address</name>'|grep '<value>'|sed -e "s/[[:blank:]]\+<value>\([[:alpha:]]\+\)[[:digit:]]\+:.*/\1/g"`


#1.切换到工作目录下.
cd $HADOOP_HOME
    #如果节点总数低于3则无法启动HA模式,所以低于3的情况什么也不做,直接退出
if (($NODECOUNT<=3));then
	echo "Nodes count must more than 3.">>init.log
	exitinit
fi

#如果不是第一个节点,则等待可能的初始化过程5分钟;如果是节点错误后被swarm重新启动
#则,等待5分钟后自行调用start-dfs.sh start-yarn.sh start-master.sh start-worker.sh脚本
#依靠官方脚本,可以确保及时服务被主节点启动过,也不会因为重复启动出现错误
if (($nodeindex!=1));then
	echo $nodehostname waiting for init...>>init.log
	sleep 5m
	cd $HADOOP_HOME
	echo "try to start dfs and yarn again.">>init.log
	sbin/start-dfs.sh
	sbin/start-yarn.sh
	if (($nodeindex==3));then
		echo "try to start historyserver again">>init.log
		mapred --daemon start historyserver
	fi

    #判断是否前3个节点,如果是前3个节点,启动master,否则启动worker
	echo "try to start spark again">>init.log
	if (($nodeindex>3));then
		$SPARK_HOME/sbin/start-worker.sh
	else
		$SPARK_HOME/sbin/start-master.sh
	fi
	exitinit
fi


#2.如果是主节点,则需要考虑进行格式化初始化,及所有节点的初始化
#  事实上,可以在各子节点上采取循环启动服务的方式,隔一段时间启动依次服务,直到主节点初始化完,各节点上服务能够随之启动成功为止
#  这里实现比较复杂,完全依靠主节点进行集群初始化,造成从节点重复启动服务,不太漂亮,以后再改吧
echo $nodehostname is the init manager nodes...>>init.log
#  等待所有节点和ZOOKEEPER集群都连接上
isAllNodesConnected $nodehostnameprefix $NODECOUNT $TRYLOOP
isHadoopOK=$?
isAllNodesConnected $zookeepernameprefix $ZOOKEEPERNODECOUNT $TRYLOOP
isZookeeperOK=$?
#  如果连接失败则退出
if ([ $isHadoopOK != 0 ] || [ $isZookeeperOK != 0 ]);then
	echo "Not all the host nodes or not all the zookeeper nodes actived. exit 1">>init.log
	exitinit
fi


#3. 判断DFS是否已经格式化,通过获取DFS目录并ls目录中是否有文件的方式
datadirectory=`echo $(getDataDirectory)`
if [ $datadirectory ];then
        datadircontent=`ls -A ${datadirectory}`
        if [ -z $datadircontent ];then
        	echo "dfs is not formatted.">>init.log
		isDfsFormat=0
	else
		echo "dfs is already formatted.">>init.log
		isDfsFormat=1
        fi
else
        echo "ERROR:Can not get hadoop tmp data directory.init can not be done. ">>init.log
	exitinit
fi

#4. 如果没有格式化,则需要先格式化,和HA同步等操作
if (( $isDfsFormat == 0 ));then 
	initHadoop_format
fi
if (( $? != 0 ));then
	echo "ERROR:Init Hadoop interruptted...">>init.log
	exitinit
fi

#5. 格式化完成后启动dfs,yarn和history server
initHadoop_noformat
if (( $? != 0 ));then
	echo "ERROR:Init Hadoop interruptted...">>init.log
	exitinit
fi

echo "hadoop init work has been done. spark init start.">>init.log

#5. 启动spark,不要使用start-all.sh,因为使用了HA模式,SPARK_MASTER_HOST没有设置,spark并不知到谁是master,使用start-all.sh会将所有节点当作master启动。采用脚本仅启动前3个节点作为master;其余使用start-workers.sh脚本启动。
echo "start masters">>init.log
$SPARK_HOME/sbin/start-master.sh
masterindex=2
while (( ${masterindex} <= 3 ));do
	echo "ssh root@${nodehostnameprefix}${masterindex} '$SPARK_HOME/sbin/start-master.sh'">>init.log
	ssh root@${nodehostnameprefix}${masterindex} '$SPARK_HOME/sbin/start-master.sh'
	let "masterindex++"
done
$SPARK_HOME/sbin/start-workers.sh
if (( $? != 0 ));then
	echo "ERROR:Init spark interruptted...">>init.log
	exitinit
fi
echo "spark init work has been done.">>init.log

tail -f /dev/null

        五、docker-compose.yml文件

version: "3.7"
services:
   pignode1:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         constraints:
           - node.hostname==pighost1
     hostname: pignode1
     environment:
       - NODE_COUNT=12
       - ZOOKEEPER_COUNT=3
     networks:
       - pig
     ports:
       - target: 22
         published: 9011
         protocol: tcp
         mode: host
       - target: 9000
         published: 9000
         protocol: tcp
         mode: host
       - target: 9870
         published: 9870
         protocol: tcp
         mode: host
       - target: 8088
         published: 8088
         protocol: tcp
         mode: host
       - target: 8080
         published: 8080
         protocol: tcp
         mode: host
       - target: 4040
         published: 4040
         protocol: tcp
         mode: host
       - target: 7077
         published: 7077
         protocol: tcp
         mode: host
     volumes:
       # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/1:/hadoopdata:wr
       - /sparkdata/1:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   pignode2:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Second Namenode限制部署在第二个节点上
         constraints:
           - node.hostname==pighost2
     networks:
       - pig
     hostname: pignode2
     ports:
       # 第二名字服务器接口
       - target: 22
         published: 9012
         protocol: tcp
         mode: host
       - target: 9890
         published: 9890
         protocol: tcp
         mode: host
       - target: 9870
         published: 9871
         protocol: tcp
         mode: host
       - target: 8088
         published: 8089
         protocol: tcp
         mode: host
       - target: 8080
         published: 8081
         protocol: tcp
         mode: host
       - target: 4040
         published: 4041
         protocol: tcp
         mode: host
       - target: 7077
         published: 7078
         protocol: tcp
         mode: host
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/2:/hadoopdata:wr
       - /sparkdata/2:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   pignode3:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           - node.hostname==pighost3
     networks:
       - pig
     hostname: pignode3
     ports:
       - target: 22
         published: 9013
         protocol: tcp
         mode: host
       - target: 9870
         published: 9872
         protocol: tcp
         mode: host
       - target: 8088
         published: 8087
         protocol: tcp
         mode: host
       - target: 8090
         published: 8090
         protocol: tcp
         mode: host
       - target: 10020
         published: 10020
         protocol: tcp
         mode: host
       - target: 19888
         published: 19888
         protocol: tcp
         mode: host
       - target: 8080
         published: 8082
         protocol: tcp
         mode: host
       - target: 4040
         published: 4042
         protocol: tcp
         mode: host
       - target: 7077
         published: 7079
         protocol: tcp
         mode: host
     volumes:
       # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/3:/hadoopdata:wr
       - /sparkdata/3:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

#------------------------------------------------------------------------------------------------
#以下均为工作节点,可在除leader以外的主机上部署

   pignode4:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           # node.role==worker
           - node.hostname==pighost3
     networks:
       - pig
     ports:
       - target: 22
         published: 9014
         protocol: tcp
         mode: host
     hostname: pignode4
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/4:/hadoopdata:wr
       - /sparkdata/4:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   pignode5:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost3
     networks:
       - pig
     ports:
       - target: 22
         published: 9015
         protocol: tcp
         mode: host
     hostname: pignode5
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/5:/hadoopdata:wr
       - /sparkdata/5:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   pignode6:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost3
     networks:
       - pig
     ports:
       - target: 22
         published: 9016
         protocol: tcp
         mode: host
     hostname: pignode6
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/6:/hadoopdata:wr
       - /sparkdata/6:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r
       
   pignode7:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost4
     networks:
       - pig
     ports:
       - target: 22
         published: 9017
         protocol: tcp
         mode: host
     hostname: pignode7
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/7:/hadoopdata:wr
       - /sparkdata/7:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   pignode8:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost4
     networks:
       - pig
     ports:
       - target: 22
         published: 9018
         protocol: tcp
         mode: host
     hostname: pignode8
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/8:/hadoopdata:wr
       - /sparkdata/8:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   pignode9:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost4
     networks:
       - pig
     ports:
       - target: 22
         published: 9019
         protocol: tcp
         mode: host
     hostname: pignode9
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/9:/hadoopdata:wr
       - /sparkdata/9:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r
     
   pignode10:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost5
     networks:
       - pig
     ports:
       - target: 22
         published: 9020
         protocol: tcp
         mode: host
     hostname: pignode10
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/10:/hadoopdata:wr
       - /sparkdata/10:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   pignode11:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost5
     networks:
       - pig
     ports:
       - target: 22
         published: 9021
         protocol: tcp
         mode: host
     hostname: pignode11
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/11:/hadoopdata:wr
       - /sparkdata/11:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r
 
   pignode12:
     image: pig/spark
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         # 将Mapreduce限制部署在第三个节点上
         constraints:
           # node.role==manager
           - node.hostname==pighost5
     networks:
       - pig
     ports:
       - target: 22
         published: 9022
         protocol: tcp
         mode: host
     hostname: pignode12
     volumes:
      # 映射xml配置文件
       - ./config/core-site.xml:/root/hadoop/etc/hadoop/core-site.xml:r
       - ./config/hdfs-site.xml:/root/hadoop/etc/hadoop/hdfs-site.xml:r
       - ./config/yarn-site.xml:/root/hadoop/etc/hadoop/yarn-site.xml:r
       - ./config/mapred-site.xml:/root/hadoop/etc/hadoop/mapred-site.xml:r
       # 映射workers文件
       - ./config/workers:/root/hadoop/etc/hadoop/workers:r
       # 映射spark配置文件
       - ./sparkconf/spark-env.sh:/root/spark/conf/spark-env.sh:r
       - ./sparkconf/spark-defaults.conf:/root/spark/conf/spark-defaults.conf:r
       - ./sparkconf/workers:/root/spark/conf/workers:r
       # 映射数据目录
       - /hadoopdata/12:/hadoopdata:wr
       - /sparkdata/12:/sparkdata:wr
       # 映射初始化脚本
       - ./init-spark.sh:/root/init-spark.sh:r

   zookeeper1:
     image: zookeeper:latest
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         constraints:
           - node.hostname==pighost1
     networks:
       - pig
     ports:
       - target: 2181
         published: 2181
         protocol: tcp
         mode: host
     hostname: zookeeper1
     environment:
         - ZOO_MY_ID=1
         - ZOO_SERVERS=server.1=zookeeper1:2888:3888;2181 server.2=zookeeper2:2888:3888;2181 server.3=zookeeper3:2888:3888;2181
     volumes:
         - /hadoopdata/zoo/1/data:/data
         - /hadoopdata/zoo/1/datalog:/datalog
         - /hadoopdata/zoo/1/logs:/logs

   zookeeper2:
     image: zookeeper:latest
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         constraints:
           - node.hostname==pighost2
     networks:
       - pig
     ports:
       - target: 2181
         published: 2182
         protocol: tcp
         mode: host
     hostname: zookeeper2
     environment:
         - ZOO_MY_ID=2
         - ZOO_SERVERS=server.1=zookeeper1:2888:3888;2181 server.2=zookeeper2:2888:3888;2181 server.3=zookeeper3:2888:3888;2181
     volumes:
         - /hadoopdata/zoo/2/data:/data
         - /hadoopdata/zoo/2/datalog:/datalog
         - /hadoopdata/zoo/2/logs:/logs

   zookeeper3:
     image: zookeeper:latest
     deploy:
       endpoint_mode: dnsrr
       restart_policy:
         condition: on-failure
       placement:
         constraints:
           - node.hostname==pighost3
     networks:
       - pig
     ports:
       - target: 2181
         published: 2183
         protocol: tcp
         mode: host
     hostname: zookeeper3
     environment:
         - ZOO_MY_ID=3
         - ZOO_SERVERS=server.1=zookeeper1:2888:3888;2181 server.2=zookeeper2:2888:3888;2181 server.3=zookeeper3:2888:3888;2181
     volumes:
         - /hadoopdata/zoo/3/data:/data
         - /hadoopdata/zoo/3/datalog:/datalog
         - /hadoopdata/zoo/3/logs:/logs
networks:
  pig:

        为了修改方便,把初始化脚本给映射上去了,后期可以拿掉。另外,就是数据目录千万不要嵌套映射。中间偷懒把spark目录映射到了hadoop已经映射过的目录下面。不报任何错误,只是所有被映射目录均为空,导致排查好长时间……

        六、运行

        使用swarm,一旦完全配置好了以后还是很简单的。为了表达一下开心,上图:

       (一)名字服务器 

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署 

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署 CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

         可以看到,HA下3个NameNode,第2个名字服务器现在是活跃的

        (二)数据服务器DataNode

         9个数据节点也挺健康

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

        (三)Yarn Resource Manager HA

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

 CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

        前面提到过,只有active的那个yarn会提供web UI

        (四)Job History Server      

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

        (五)Spark Master

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

 CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

         可以看到,Stanby的master节点,是不管理workers的。

(六)Spark交互式界面

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署

         spark-shell和pyspark。虽然python是相当大众化了,但是scala也不错,尤其是它的lamda语法,简直感觉这个语言就是为spark而生,给用户白送的,入门门槛相当低。我已经迫不及待打算开始搓一搓了。

 文章来源地址https://www.toymoban.com/news/detail-452401.html

到了这里,关于CENTO OS上的网络安全工具(二十二)Spark HA swarm容器化集群部署的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • CENTOS上的网络安全工具(二十五)SPARK+NetSA Security Tools容器化部署(1)

                 YAF(Yet Another Flowmeter)是作为CERT NetSA安全工具套件的传感器部分存在的,支持输入实时数据流和PCAP文件,解析并输出流数据,或针对特定协议的深包检测元数据。目前,YAF在整个系统的作用如下图所示:         其中Pipeline和SiLK都存在好多年了,用起来也算

    2024年02月11日
    浏览(42)
  • CENTOS上的网络安全工具(八)Scapy协议解析

            一般来说,使用诸如Arkima、Suricata等现成的开源网络安全工具已经可以满足大多数需求,但需求总是无止境的。当我们需要关注网络通信中一些奇奇怪怪的行为的时候,常规工具给出的数据特征常常无法满足我们特立独行的需求,这个时候往往需要我们自己进行网络

    2024年02月02日
    浏览(48)
  • 网络安全进阶学习第二十一课——XXE

    XXE(XML External Entity,XML) 外部实体 注入攻击。 — — 攻击者通过构造 恶意的外部实体 ,当解析器解析了包含“恶意”外部实体的XML类型文件时,便会导致被XXE攻击。XXE漏洞主要由于危险的外部实体引用并且未对外部实体进行敏感字符的过滤,从而可以造成命令执行,目录遍

    2024年02月06日
    浏览(62)
  • 网络安全进阶学习第二十一课——XML介绍

    XML(eXtensible Markup Language),可扩展标记语言,是一种标记语言,使用简单标记描述数据;(另一种常见的标记语言是HTML) XML是一种非常灵活的语言, 没有固定的标签,所有标签都可以自定义 ; 通常 XML被用于信息的传递和记录 ,因此,xml经常被用于充当配置文件。如果把

    2024年02月06日
    浏览(48)
  • 网络安全进阶学习第十二课——SQL手工注入3(Access数据库)

    判断数据库类型 —— 判断表名 —— 判断列名 —— 判断列名长度 —— 查出数据。 asp的网站,常用数据库为access、sqlserver。 and exsits (select * from msysobjects)0 access and exsits (select * from sysobjects)0 sqlserver 上述语句 会返回1或者0 。 msysobjects是access的默认数据库 , sysobjects是sqlserv

    2024年02月11日
    浏览(55)
  • 网络安全进阶学习第二十课——CTF之文件操作与隐写

    ------ 当文件没有文件扩展名,或者具有文件扩展名但无法正常打开时,可以根据识别到的文件类型进行修改文件扩展名,从而使文件能够正常打开。 使用场景:不知道后缀名,无法打开文件。 格式: file myheart 这里就识别到是一个PCAP的流量包 ------ 通过WinHex程序可以查看文件

    2024年02月07日
    浏览(43)
  • 开源安全测试工具 | 网络安全工具列表

    • AttackSurfaceMapper (https://github.com/superhedgy/AttackSurfaceMapper) - 自动化渗透测试工具, 使用手册/测试流程 (https://www.uedbox.com/post/59110/)。 • vajra (https://github.com/r3curs1v3-pr0xy/vajra) - 自动化渗透测试. • Savior (https://github.com/Mustard404/Savior) - 渗透测试报告自动生成工具!. • OneForAll (h

    2024年02月03日
    浏览(54)
  • 【网络安全-信息收集】网络安全之信息收集和信息收集工具讲解(提供工具)

    分享一个非常详细的网络安全笔记,是我学习网安过程中用心写的,可以点开以下链接获取: 超详细的网络安全笔记 工具下载百度网盘链接(包含所有用到的工具): 百度网盘 请输入提取码 百度网盘为您提供文件的网络备份、同步和分享服务。空间大、速度快、安全稳固,

    2024年02月08日
    浏览(53)
  • 网络安全工具合计(攻防工具)

    目录 All-Defense-Tool 免责声明 半/全自动化利用工具 信息收集工具 资产发现工具 子域名收集工具 目录扫描工具 指纹识别工具 端口扫描工具 Burp插件 浏览器插件 邮箱钓鱼 社工个人信息收集类 APP/公众号/小程序相关工具 常用小工具 漏洞利用工具 漏洞扫描框架/工具 中间件/应用

    2024年02月13日
    浏览(57)
  • 网络安全工具——Wireshark抓包工具

    Wireshark是一个网络封包分析软件。网络封包分析软件的功能是撷取网络封包,并尽可能显示出最为详细的网络封包资料。Wireshark使用WinPCAP作为接口,直接与网卡进行数据报文交换。 网络管理员使用Wireshark 来检测网络问题, 网络安全工程师使用Wireshark来检查资讯安全相关问题

    2024年02月13日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包