2023年美国大学生数学建模竞赛B题重塑马赛马拉的形象解题全过程文档及程序

这篇具有很好参考价值的文章主要介绍了2023年美国大学生数学建模竞赛B题重塑马赛马拉的形象解题全过程文档及程序。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2023年美国大学生数学建模竞赛

B题 重塑马赛马拉的形象

原题再现:

  背景介绍
  肯尼亚的野生动物保护区最初主要是为了保护野生动物和其他自然资源而设立的。肯尼亚议会通过了2013年《野生动物保护和管理法》, 以提供更公平的资源共享,以及允许替代的、基于社区的管理努力。此后,肯尼亚增加了修正案,以解决立法中的漏洞,提供更明确的治理、财政和对违法者的惩罚。
  要求
  你的任务是以马赛马拉这个大型野生动物保护区为重点,确定管理公园内外资源的替代方法。具体来说,你应该。
  ●考虑并推荐当前保护区内不同区域的具体政策和管理策略,这些政策和策略将保护野生动物和其他自然资源,同时也将平衡居住在该地区的人们的利益。这些政策和策略应有助于减轻居住在保护区附近的人们所经历的机会丧失的影响,并尽量减少动物和被保护区吸引的人们之间的负面互动。
  ●制定并描述一种方法,以确定哪些政策和管理战略将产生最佳结果。你的报告应该讨论如何对你的方法的结果进行排序和比较。一定要包括描述和分析用于预测动物和人之间互动的模型,以及由此对保护区内和周围地区的经济影响。
  ●鉴于你提出的计划,对你的建议所带来的长期趋势进行预测。分析并提供对可能的长期结果的确定性和影响的估计。你还应该描述你的方法如何适用于其他野生动物管理区。
  最后,为肯尼亚旅游和野生动物委员会提供一份两页的非技术性报告,讨论你提出的计划及其对保护区的价值。

整体求解过程概述(摘要)

  每年,世界上最壮观的野生动物迁徙,口口相传地称为“马拉河渡口”,发生在肯尼亚的马赛马拉保护区。该保护区最初是为了保护野生动植物和自然资源而建立的。然而,生活在该地区的人民的利益也不容忽视。
  在建立所有模型之前,我们对大量数据进行高可靠性的清理和可视化,这对我们后续的指标选择工作有很大帮助。此外,我们精确地定义了“失去的机会”和“消极互动”的模糊概念。
  对于问题 1,我们将马赛马拉大致平均分为 36 个网格,以便于建模,同时考虑到其当前的自然资源和野生动物分布。对于每个网格,我们选择建立 4 个功能区之一:野生动物保护区、农业区、狩猎区或旅游区。为了平衡区域内野生动物和人类的利益,我们提出了生态效益和经济效益的概念和计算方法,并将其最大值作为目标函数。我们建立了模型一:基于双目标规划的马赛马拉资源配置战略模型。制约因素是:(1)生态效益的大小制约了功能区的类型;(2)游客数量的限制;(3)居民收入保障等。使用术语,计算出 3 个 seanarios。以场景2为例:建立13个野生动物保护区、13个农区、 2个狩猎区、9个旅游区。

  对于问题2,为了确定能够产生最佳结果的管理解决方案,我们开发了模型二:基于Dijkstra的最小相互作用模型和经济影响评价模型。我们指定了四种类型的交互作用,类似于四个功能区域之间的影响关系,并确定有向图中路径的权重。基于从问题 3 的求解中获得的 1 个场景,我们使用改进的 Dijkstra 算法通过分别计算其最短路径来衡量每个场景的交互影响。同时,考虑到马赛马拉地区的经济发展水平,三种情景的经济效益分别为141,274.438美元,154,948.974美元和130,180.760美元(单位:百万)。结果表明,情景2交互性最佳,经济效率最高。因此,方案 2 是最好的。
  对于问题3,我们开发了模型三:马赛马拉地区的长期趋势预测模型。我们首先预测了游客的增加,这可能是由于负面的人与动物互动减少造成的。然后,我们拟合了一个二次非线性回归方程来预测2010-2019年肯尼亚旅游收入与游客数量之间的关系,进而预测旅游收入的变化。以COVID-19大流行为例,在检验长期预测结果的准确性时,我们使用t检验并计算出小于0.05的p值,表明COVID-19大流行前后肯尼亚的旅游收入存在显著差异。COVID-19大流行被认为影响了旅游业。由于影响因素丰富,我们的模型具有很强的适应性以及讨论的特殊情况。我们研究了它在黄石国家公园的应用。
  最后,对指数权重的敏感性分析表明,我们的模型对它们的变化并不敏感。在讨论了该模型的优势和改进之后,为肯尼亚旅游和野生动物委员会编写了一份关于马赛马拉资源再分配计划及其价值的两页非技术报告。

模型假设:

  为了简化问题,我们做出以下基本假设,每个假设都有适当的理由。

  假设1:本文中的所有数据来源都是真实可靠的。
  理由:我们需要依靠马赛马拉及周边地区的历史数据来分析其在经济、气候和生物多样性方面的趋势。因此,数据的可靠性非常重要。
  假设2:未来50年内,马赛马拉及周边地区不会发生重大自然灾害。
  理由:地震、泥石流、海啸等自然灾害属于不可抗力因素,我们无法准确预测或量化它们对模型稳定性的影响。
  假设3:马赛马拉地区的人与自然平衡不受我们讨论的影响以外的因素的支配。
  理由:我们尽可能设想了可能影响问题的相关因素,并给出了几乎不存在其他因素影响的原因。因此,为了简化模型,我们可以做出上述假设。
  假设4:对于马赛马拉划分的36个地区,可以假设每个小区域内的环境,经济和其他条件是相同的。
  理由:马赛马拉地区分区的合理理想化。假设区域内的条件相同,有助于我们计算相关的收益和成本。
  假设5:对于马赛马拉地区部分难以获得的数据,可以用肯尼亚的数据代替。
  理由:由于难以获得马赛马拉部分地区的数据,我们不得不替换来自肯尼亚的相关数据,但是,根据已知数据的相似性,我们可以得出结论,这种做法对我们模型准确性的影响在合理的误差范围内。

问题重述:

  对于问题1,我们需要考虑是否针对当前保护区的不同区域改进具体的政策和管理策略。在考虑新的政策和管理策略时,我们需要平衡生态效益和经济效益,同时避免对旅游业吸引到保护区的人们产生负面影响。

  对于问题 2,我们需要确定哪些策略和管理策略效果最好。我们需要构建一个模型来对 task1 的结果进行排名和比较。排名和比较的原则包括该政策下的动物与人类的互动是否大多是积极的,以及它们是否对保护区内和周围的经济产生积极影响。

  对于问题 3,我们需要预测任务 1 中提出的计划对未来发展的影响。我们需要分析相应的政策和管理策略的结果,以及如何将这些管理策略应用于其他自然保护区。

  对于问题4,我们需要向肯尼亚旅游和野生动物委员会提供一份非技术性报告。在报告中,我们需要描述我们提出的计划,并分析该计划对马赛马拉保护区的影响和价值。

模型的建立与求解整体论文缩略图

2023年美国大学生数学建模竞赛B题重塑马赛马拉的形象解题全过程文档及程序
2023年美国大学生数学建模竞赛B题重塑马赛马拉的形象解题全过程文档及程序文章来源地址https://www.toymoban.com/news/detail-452503.html

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

function [min,path]=dijkstra(w,start,terminal) 
n=size(w,1); label(start)=0; f(start)=start; 
for i=1:n

if i~=start

label(i)=inf;

end

end

%sThe array holds the set of vertices already searched, initialized with only start s(1)=start; u=start;

while length(s)<n for i=1:n

ins=0;

for j=1:length(s)

if i==s(j) ins=1;
if i==s(j) ins=1;

end end

end

%Determine if there are relay vertices that make the distance between them shorter, if so update the distance and update the precursor node

if ins==0

v=i;

if label(v)>(label(u)+w(u,v))

label(v)=(label(u)+w(u,v));

f(v)=u;

end

end

end
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

到了这里,关于2023年美国大学生数学建模竞赛B题重塑马赛马拉的形象解题全过程文档及程序的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 2023年美国大学生数学建模竞赛C题预测Wordle的结果解题全过程文档及程序

       背景介绍    Wordle是纽约时报目前每天提供的一个流行谜题。玩家通过在六次或更短时间内猜出一个至五个字母的单词来解决这个谜题,每次猜测都会得到反馈。在这个版本中, 每个猜测必须是一个实际的英文单词。不允许猜测不被比赛认可的单词。Wordle继续受到欢迎

    2024年02月05日
    浏览(77)
  • 2023年美国大学生数学建模竞赛B题重塑马赛马拉的形象解题全过程文档及程序

       背景介绍    肯尼亚的野生动物保护区最初主要是为了保护野生动物和其他自然资源而设立的。肯尼亚议会通过了2013年《野生动物保护和管理法》, 以提供更公平的资源共享,以及允许替代的、基于社区的管理努力。此后,肯尼亚增加了修正案,以解决立法中的漏洞

    2024年02月05日
    浏览(45)
  • 基于overleaf 的美国大学生数学建模竞赛(美赛)latex 格式模板(含信件和附件)

    可能是最后一次打美赛了,感觉有的东西不整理整理有点对不起自己的经历。感觉为这个比赛付出过挺多的,这几次参赛的经历也从各种方面提升了我的能力,相信未来的自己也还会怀念这段时光。 个人认为美赛的难点之一就是优质资源难得,不知道自己的整理算不算优质资

    2024年02月04日
    浏览(48)
  • 2023年“华数杯”国际大学生数学建模竞赛思路

    B题完整思路已出! 所有资料请在群直接拿,谢谢。 https://zhuanlan.zhihu.com/p/603048568 注意:现在给出的是常用数据集,本次比赛的数据还在准备中哦~) 为此,小云也准备好了一些常用的数据集,都放在云里啦,这样可以避免比赛的时候找数据手忙脚乱。(感兴趣的小伙伴可以

    2024年02月12日
    浏览(64)
  • 2023 大学生数学建模竞赛-C题-第一问

    题目: 在生鲜商超中,一般蔬菜类商品的保鲜期都比较短,且品相随销售时间的增加而变差, 大部分品种如当日未售出,隔日就无法再售。因此,商超通常会根据各商品的历史销售和需 求情况每天进行补货。 由于商超销售的蔬菜品种众多、产地不尽相同,而蔬菜的进货交易

    2024年02月09日
    浏览(53)
  • 2023华数杯全国大学生数学建模竞赛思路模型代码

    目录 1.华数杯数学建模大赛简介 2.大赛思路模型代码见文末        比赛时间:2023.8.3———2023.8.6         比赛性质: 国家级,暑假期间含金量和比赛规模都不错的数学建模比赛,目前举办到第四届,规模一年比一年大,参与人数越来越多,认可度越来越高,赛题类型和赛

    2024年02月14日
    浏览(65)
  • 2023高教社杯全国大学生数学建模竞赛选题建议

    如下为C君的2023高教社杯全国大学生数学建模竞赛(国赛)选题建议, 提示:DS C君认为的难度:CBA,开放度:BAC   。 D、E题推荐选E题,后续会直接更新E论文和思路,不在这里进行选题分析,以下为A、B、C题选题建议及初步分析 A题:定日镜场的优化设计 A题是数模类赛事很

    2024年02月09日
    浏览(54)
  • 2023全国大学生数学建模竞赛C题思路+模型+代码+论文

    目录 一.思路模型见文末名片,比赛开始第一时间更新 二.国赛常用算法之主成分分析法(PCA) 三.MATLAB代码 代码相对简单,是从司守奎大神的《数学建模算法与应用》一书中学习到的,笔者只不过添加了一点注释,拾人牙慧,惭愧惭愧。将代码文件和txt文件放在一个文件夹中就

    2024年02月09日
    浏览(105)
  • 2023年高教社杯全国大学生数学建模竞赛参赛事项注意

    一年一度的数学建模国赛要来啦!!!小编仔细阅读了比赛官方网站上的规则和要求,以及比赛的题型和时间安排,现总结分享给大家。 小编将会在开赛后第一时间发布选题建议、所有题目的思路解析、相关代码、参考文献、参考成品论文等多项资料,帮助大家取得好成绩哦

    2024年02月09日
    浏览(100)
  • 2023高教社杯全国大学生数学建模竞赛B题代码解析

    2023高教社杯全国大学生数学建模竞赛B题 多波束测线问题 代码解析 因为一些不可抗力,下面仅展示部分matlab代码(第一问的部分),其余代码看文末 节选了部分: 有关思路、相关代码、讲解视频、参考文献等相关内容可以点击下方群名片哦!

    2024年02月09日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包