这篇博客将在单摄像头目标检测的基础上,实现单网络多线程的实时目标检测。
实现方法
在detect.py同级目录下新建streams.txt文件,每个视频流源单独成行:
本地摄像头填0
USB摄像头填1,2,3…
IP摄像头要根据摄像头类型,按下面格式填写(我将在之后的博客中讲解实现)
rtsp://admin(账号):admin(密码)@ip:端口/(主码流,辅码流之类的)
0是电脑自带摄像头,1是外接USB摄像头
在detect.py中修改 '--source' 的默认值为'streams.txt'
parser.add_argument('--source', type=str,default='streams.txt', help='source') #单网络多线程 实时检测
给出更改后参数配置部分完整代码:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
#parser.add_argument('--source', type=str, default='data/images', help='source') # file/folder, 0 for webcam
#parser.add_argument('--source', type=str, default='data/video', help='source') # file/folder, 0 for webcam
#parser.add_argument('--source', type=str, default='0', help='source') # file/folder, 0 for webcam
parser.add_argument('--source', type=str, default='streams.txt', help='source') # file/folder, 0 for webcam
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
print(opt)
check_requirements(exclude=('pycocotools', 'thop'))
效果
以电脑自带摄像头和一个外接USB摄像头为例。
运行detect.py后,可以看到电脑自带摄像头识别到一个人,USB摄像头未识别到物体,括号内是识别用时。
现在电脑自带摄像头识别到一个人,USB摄像头识别到人、狗的图案、电视和笔记本电脑,括号内是识别用时。说明在多线程下仍然能做到多目标识别文章来源:https://www.toymoban.com/news/detail-452604.html
求学路上,你我共勉(๑•̀ㅂ•́)و✧文章来源地址https://www.toymoban.com/news/detail-452604.html
到了这里,关于使用YOLOv5实现多摄像头实时目标检测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!