深入理解 python 虚拟机:魔术方法之数学计算

这篇具有很好参考价值的文章主要介绍了深入理解 python 虚拟机:魔术方法之数学计算。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深入理解 python 虚拟机:魔术方法之数学计算

在本篇文章当中主要给大家介绍在 python 当中一些常见的魔术方法,本篇文章主要是关于与数学计算相关的一些魔术方法,在很多科学计算的包当中都使用到了这些魔术方法。

大小比较

当我们在Python中定义自己的类时,可以通过重写一些特殊方法来改变对象的比较行为。这些特殊方法包括__lt____le____eq____ne____gt____ge__,它们分别对应于小于、小于等于、等于、不等于、大于和大于等于的比较运算符。这些方法允许我们自定义对象之间的比较规则。

下面是对每个方法的详细介绍:

  • object.__lt__(self, other) 这个方法用于定义小于(<)运算符的行为。当我们使用小于运算符比较两个对象时,会调用该方法。如果self对象小于other对象,则返回True,否则返回False
  • object.__le__(self, other) 这个方法用于定义小于等于(<=)运算符的行为。当我们使用小于等于运算符比较两个对象时,会调用该方法。如果self对象小于等于other对象,则返回True,否则返回False
  • object.__eq__(self, other) 这个方法用于定义等于(==)运算符的行为。当我们使用等于运算符比较两个对象时,会调用该方法。如果self对象等于other对象,则返回True,否则返回False
  • object.__ne__(self, other) 这个方法用于定义不等于(!=)运算符的行为。当我们使用不等于运算符比较两个对象时,会调用该方法。如果self对象不等于other对象,则返回True,否则返回False
  • object.__gt__(self, other) 这个方法用于定义大于(>)运算符的行为。当我们使用大于运算符比较两个对象时,会调用该方法。如果self对象大于other对象,则返回True,否则返回False
  • object.__ge__(self, other) 这个方法用于定义大于等于(>=)运算符的行为。当我们使用大于等于运算符比较两个对象时,会调用该方法。如果self对象大于等于other对象,则返回True,否则返回False

这些比较方法允许我们根据自己的需求自定义对象的比较规则。当我们使用比较运算符对对象进行比较时,Python会自动调用这些方法,并返回相应的结果。

下面是一个简单的示例,展示如何在自定义类中使用这些比较方法:

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y
    
    def __lt__(self, other):
        return self.x < other.x and self.y
        return self.y < other.y
    
    def __le__(self, other):
        return self.x <= other.x and self.y <= other.y
    
    def __eq__(self, other):
        return self.x == other.x and self.y == other.y
    
    def __ne__(self, other):
        return not self.__eq__(other)
    
    def __gt__(self, other):
        return self.x > other.x and self.y > other.y
    
    def __ge__(self, other):
        return self.x >= other.x and self.y >= other.y


p1 = Point(1, 2)
p2 = Point(3, 4)


print(p1 < p2)  
print(p1 <= p2)
print(p1 == p2)
print(p1 != p2)
print(p1 > p2)
print(p1 >= p2)

上面的代码输出结果如下所示:

2
True
False
True
False
False

在上面的示例中,我们定义了一个名为Point的类,它表示一个二维平面上的点。我们重写了__lt____le____eq____ne____gt____ge__方法来定义点之间的比较规则。根据我们的定义,如果一个点的x坐标和y坐标都小于另一个点的相应坐标,则我们认为前一个点小于后一个点。

通过创建两个Point对象并使用比较运算符进行比较,我们可以看到根据我们的定义,比较运算符返回了预期的结果。

模拟设计一个数学类型

当我们在Python中定义自己的类时,可以通过重写一些特殊方法来改变对象的算术运算行为。这些特殊方法包括__add____sub____mul____matmul____truediv____floordiv____mod____divmod____pow____lshift____rshift____and____xor____or__,它们分别对应于加法、减法、乘法、矩阵乘法、真除法、整除法、取模运算、divmod函数、幂运算、左移位、右移位、按位与、按位异或和按位或的运算符。这些方法允许我们自定义对象之间的算术运算规则。

  • object.__add__(self, other) 这个方法用于定义加法(+)运算符的行为。当我们使用加法运算符对两个对象进行相加时,会调用该方法。它返回两个对象相加的结果。
  • object.__sub__(self, other) 这个方法用于定义减法(-)运算符的行为。当我们使用减法运算符对两个对象进行相减时,会调用该方法。它返回两个对象相减的结果。
  • object.__mul__(self, other) 这个方法用于定义乘法(*)运算符的行为。当我们使用乘法运算符对两个对象进行相乘时,会调用该方法。它返回两个对象相乘的结果。
  • object.__matmul__(self, other) 这个方法用于定义矩阵乘法(@)运算符的行为。当我们使用矩阵乘法运算符对两个对象进行矩阵乘法时,会调用该方法。它返回两个对象的矩阵乘法结果。
  • object.__truediv__(self, other) 这个方法用于定义真除法(/)运算符的行为。当我们使用真除法运算符对两个对象进行相除时,会调用该方法。它返回两个对象相除的结果。
  • object.__floordiv__(self, other) 这个方法用于定义整除法(//)运算符的行为。当我们使用整除法运算符对两个对象进行相除并取整时,会调用该方法。它返回两个对象相除取整的结果。
  • object.__mod__(self, other) 这个方法用于定义取模(%)运算符的行为。当我们使用取模运算符对两个对象进行取模运算时,会调用该方法。它返回两个对象取模运算的结果。
  • object.__divmod__(self, other)这个方法用于定义divmod函数的行为。divmod函数接受两个参数,并返回一个包含商和余数的元组。当我们对两个对象使用divmod函数时,会调用该方法。它返回一个包含两个对象的商和余数的元组。
  • object.__pow__(self, other[, modulo]) 这个方法用于定义幂运算(**)运算符的行为。当我们使用幂运算符对两个对象进行幂运算时,会调用该方法。它返回两个对象的幂运算结果。可选的modulo参数用于指定取模运算的模数。
  • object.__lshift__(self, other) 这个方法用于定义左移位(<<)运算符的行为。当我们对一个对象使用左移位运算符时,会调用该方法。它返回对象左移指定位数后的结果。
  • object.__rshift__(self, other) 这个方法用于定义右移位(>>)运算符的行为。当我们对一个对象使用右移位运算符时,会调用该方法。它返回对象右移指定位数后的结果。
  • object.__and__(self, other) 这个方法用于定义按位与(&)运算符的行为。当我们对两个对象使用按位与运算符时,会调用该方法。它返回两个对象按位与的结果。
  • object.__xor__(self, other) 这个方法用于定义按位异或(^)运算符的行为。当我们对两个对象使用按位异或运算符时,会调用该方法。它返回两个对象按位异或的结果。
  • object.__or__(self, other) 这个方法用于定义按位或(|)运算符的行为。当我们对两个对象使用按位或运算符时,会调用该方法。它返回两个对象按位或的结果。

通过重写这些方法,我们可以在自定义类中定义对象之间的算术运算规则。当我们使用相应的算术运算符或函数对对象进行操作时,Python会自动调用这些方法,并返回相应的结果。

下面是一个简单的示例,展示如何在自定义类中使用这些算术方法:

class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __add__(self, other):
        return Vector(self.x + other.x, self.y + other.y)

    def __sub__(self, other):
        return Vector(self.x - other.x, self.y - other.y)

    def __mul__(self, scalar):
        return Vector(self.x * scalar, self.y * scalar)

    def __truediv__(self, scalar):
        return Vector(self.x / scalar, self.y / scalar)

    def __repr__(self):
        return f"Vector[{self.x}, {self.y}]"


# 创建两个 Vector 对象
v1 = Vector(1, 2)
v2 = Vector(3, 4)

# 使用算术运算符进行操作
v3 = v1 + v2
v4 = v1 - v2

v5 = v1 * 2
v6 = v2 / 3

print(f"{v1 = }")
print(f"{v2 = }")
print(f"{v3 = }")
print(f"{v4 = }")
print(f"{v5 = }")
print(f"{v6 = }")

上面的代码输出结果如下所示:

v1 = Vector[1, 2]
v2 = Vector[3, 4]
v3 = Vector[4, 6]
v4 = Vector[-2, -2]
v5 = Vector[2, 4]
v6 = Vector[1.0, 1.3333333333333333]

在上面的示例中,我们定义了一个名为Vector的类,它表示二维向量。我们重写了__add____sub____mul____truediv__方法来定义向量之间的加法、减法、乘法和真除法的规则。根据我们的定义,向量的加法是将对应的分量相加,向量的减法是将对应的分量相减,向量的乘法是将每个分量与标量相乘,向量的真除法是将每个分量除以标量。通过创建两个Vector对象并使用算术运算符进行操作,我们可以看到根据我们的定义,算术运算符返回了预期的结果。

当我们在Python中定义自己的类时,除了重写一些魔术方法来改变对象的算术运算行为之外,还可以重写对应的反向魔术方法来处理反向运算。这些反向魔术方法以__r开头,后面跟着对应的运算符,例如__radd____rsub____rmul__等。它们用于在无法直接对另一个对象调用相应的魔术方法时,尝试使用当前对象的魔术方法来处理反向运算。主要有下面的方法:

object.__radd__(self, other)
object.__rsub__(self, other)
object.__rmul__(self, other)
object.__rmatmul__(self, other)
object.__rtruediv__(self, other)
object.__rfloordiv__(self, other)
object.__rmod__(self, other)
object.__rdivmod__(self, other)
object.__rpow__(self, other[, modulo])
object.__rlshift__(self, other)
object.__rrshift__(self, other)
object.__rand__(self, other)
object.__rxor__(self, other)
object.__ror__(self, other)

比如 a + b,当 a 当中没有定义 __add__的时候,就会调用 b 的 __radd__ 。比如下面这个例子:

class A:

    def __init__(self, x):
        self.x = x
        

class B:
    def __init__(self, x):
        self.x = x

    def __radd__(self, other):
        print("In B __radd__")
        return self.x + other.x


if __name__ == '__main__':
    a = A(1)
    b = B(1)
    print(a + b)

上面的代码输出结果如下所示:

In B __radd__
2

除了上面关于数据的魔术方法之外,还有一些其他的魔术方法,具体如下所示:

object.__neg__(self)
object.__pos__(self)
object.__abs__(self)
object.__invert__(self)
object.__complex__(self)
object.__int__(self)
object.__float__(self)
object.__index__(self)
object.__round__(self[, ndigits])
object.__trunc__(self)
object.__floor__(self)
object.__ceil__(self)
  • object.__neg__(self) 这个方法用于定义负号(-)运算符的行为。当应用负号运算符到一个对象时,会调用该对象的__neg__方法。它返回一个表示当前对象相反数的新对象。
  • object.__pos__(self) 这个方法用于定义正号(+)运算符的行为。当应用正号运算符到一个对象时,会调用该对象的__pos__方法。它返回当前对象的副本。
  • object.__abs__(self) 这个方法用于定义绝对值(abs())函数的行为。当应用abs()函数到一个对象时,会调用该对象的__abs__方法。它返回当前对象的绝对值。
  • object.__invert__(self) 这个方法用于定义按位取反(~)运算符的行为。当应用按位取反运算符到一个对象时,会调用该对象的__invert__方法。它返回当前对象按位取反后的结果。
  • object.__complex__(self) 这个方法用于定义complex()函数的行为,用于将对象转换为复数形式。当应用complex()函数到一个对象时,会调用该对象的__complex__方法。它返回一个复数对象,表示当前对象。
  • object.__int__(self) 这个方法用于定义int()函数的行为,用于将对象转换为整数形式。当应用int()函数到一个对象时,会调用该对象的__int__方法。它返回一个整数对象,表示当前对象。
  • object.__float__(self) 这个方法用于定义float()函数的行为,用于将对象转换为浮点数形式。当应用float()函数到一个对象时,会调用该对象的__float__方法。它返回一个浮点数对象,表示当前对象。
  • object.__index__(self) 这个方法用于定义operator.index()函数的行为,用于将对象转换为整数索引。当应用operator.index()函数到一个对象时,会调用该对象的__index__方法。它返回一个整数对象,表示当前对象可以用作索引。
  • object.__round__(self[, ndigits]) 这个方法用于定义round()函数的行为,用于对对象进行四舍五入。当应用round()函数到一个对象时,会调用该对象的__round__方法。可选的ndigits参数指定小数位数,默认为None。它返回一个新的对象,表示当前对象四舍五入后的结果。
  • object.__trunc__(self) 这个方法用于定义math.trunc()函数的行为,用于将对象截断为整数。当应用math.trunc()函数到一个对象时,会调用该对象的__trunc__方法。

总结

本篇文章介绍了在Python中使用魔术方法来改变对象的比较和算术运算行为。对于比较运算符,可以通过重写__lt____le____eq____ne____gt____ge__方法来定义自定义对象之间的比较规则。对于算术运算符,可以通过重写__add____sub____mul____matmul____truediv____floordiv____mod____divmod____pow____lshift____rshift____and____xor____or__方法来定义对象之间的算术运算规则。这些方法允许自定义类的对象具有与内置类型相似的行为。

本篇文章还提到了反向魔术方法,即以__r开头的方法,用于处理反向运算。例如,__radd____rsub____rmul__等方法可以定义对象在反向运算中的行为。

通过示例代码,文章演示了如何在自定义类中重写这些魔术方法,以实现自定义的比较和算术运算规则。最后,展示了在自定义类中使用这些方法时得到的预期结果。

总而言之,通过理解和使用这些魔术方法,我们可以在Python中更好地控制自定义类对象的比较和算术运算行为,使其更符合特定需求。


本篇文章是深入理解 python 虚拟机系列文章之一,文章地址:https://github.com/Chang-LeHung/dive-into-cpython

更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。文章来源地址https://www.toymoban.com/news/detail-453196.html

到了这里,关于深入理解 python 虚拟机:魔术方法之数学计算的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深入理解python虚拟机:调试器实现原理与源码分析

    调试器是一个编程语言非常重要的部分,调试器是一种用于诊断和修复代码错误(或称为 bug)的工具,它允许开发者在程序执行时逐步查看和分析代码的状态和行为,它可以帮助开发者诊断和修复代码错误,理解程序的行为,优化性能。无论在哪种编程语言中,调试器都是一

    2023年04月26日
    浏览(41)
  • 深入理解 python 虚拟机:破解核心魔法——反序列化 pyc 文件

    在前面的文章当中我们详细的对于 pyc 文件的结构进行了分析,pyc 文件主要有下面的四个部分组成:魔术、 Bite Filed 、修改日期和 Code Object 组成。在前面的文章当中我们已经对前面三个部分进行了字节角度的分析,直接从 pyc 文件当中读取对应的数据并且打印出来了。而在本

    2024年02月05日
    浏览(30)
  • 深入理解 python 虚拟机:字节码教程(2)——控制流是如何实现的?

    在本篇文章当中主要给大家分析 python 当中与控制流有关的字节码,通过对这部分字节码的了解,我们可以更加深入了解 python 字节码的执行过程和控制流实现原理。 控制流这部分代码主要涉及下面几条字节码指令,下面的所有字节码指令都会有一个参数: JUMP_FORWARD ,指令完

    2023年04月10日
    浏览(21)
  • 深入理解 python 虚拟机:字节码教程(1)——原来装饰器是这样实现的

    在本篇文章当中主要给大家介绍在 cpython 当中一些比较常见的字节码,从根本上理解 python 程序的执行。在本文当中主要介绍一些 python 基本操作的字节码,并且将从字节码的角度分析函数装饰器的原理! 这个指令用于将一个常量加载到栈中。常量可以是数字、字符串、元组

    2023年04月09日
    浏览(30)
  • 深入理解 python 虚拟机:描述器的王炸应用-property、staticmethod 和 classmehtod

    在本篇文章当中主要给大家介绍描述器在 python 语言当中有哪些应用,主要介绍如何使用 python 语言实现 python 内置的 proterty 、staticmethod 和 class method 。 当你在编写Python代码时,你可能会遇到一些需要通过方法来访问或设置的属性。Python中的 property 装饰器提供了一种优雅的方

    2024年02月03日
    浏览(26)
  • 【Python 矩阵:快速入门指南】-深入理解矩阵运算及其常用计算

    【Python 矩阵:快速入门指南】-深入理解矩阵运算及其常用计算 在数据科学和机器学习中,矩阵是一个非常重要的数学概念,它被广泛应用于数据处理、图像处理、自然语言处理等领域。Python作为一门高效且广泛应用的编程语言,提供了许多强大的工具来处理矩阵。本文将介

    2024年02月13日
    浏览(52)
  • 深入理解Python中的os.chdir()方法

    在Python中,os.chdir()方法用于改变当前的工作目录。工作目录是指当前正在执行的脚本所在的目录。通过使用os.chdir()方法,我们可以在脚本执行过程中切换到不同的目录。 在编写Python脚本时,我们经常需要操作文件和目录。而os.chdir()方法可以帮助我们在不同的目录之间进行切

    2024年02月15日
    浏览(46)
  • Python魔术方法

    Python实用教程_spiritx的博客-CSDN博客 所有以双下划线 __ 包起来的方法,统称为 Magic Method(魔术方法) ,它是一种的特殊方法,普通方法需要调用,而魔术方法不需要 显示 调用就可以执行。 魔术方法在类或对象的某些事件出发后会自动执行,让类具有神奇的“魔力”。如果

    2024年02月10日
    浏览(34)
  • Python中魔术方法汇总

    1. Python中魔术方法的定义 Python的魔术方法(Magic Methods)是面向对象编程中一系列特殊的方法,它们以双下划线 __ 开始和结束。这些方法允许类定义特定的行为或响应特定的操作。以下是一份详细的魔术方法列表及其用途并附带部分常用魔术方法的Python代码实例说明: 2. 魔术

    2024年01月17日
    浏览(27)
  • Python魔术方法大全

    在Python中,所有以“__”双下划线包起来的方法,都统称为“Magic Method”(魔术方法),例如类的初始化方法 init ,Python中所有的魔术方法均在官方文档中有相应描述,这边给大家把所有的魔术方法汇总了一下,希望对大家的学习有所帮助。 1. 基本的魔法方法 名称 说明 new (cl

    2024年02月11日
    浏览(26)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包