[2] 图像处理之----二值化处理

这篇具有很好参考价值的文章主要介绍了[2] 图像处理之----二值化处理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、什么是二值化处理

我们都知道,图像是由矩阵构成,矩阵中每个点的RGB值都不一样,呈现出来的色彩不一样,最终整体呈现给我们的就是一张彩色的图像。所谓”二值化处理“就是将矩阵中每个点的RGB值(0,0,0)[黑色]或者(255,255,255)[白色]

2、为什么要进行二值化处理

早期人们使用计算机处理图像是,实在图像灰度化处理的基础上在进行操作的,但是当时的硬件水平不足,所以处理速度很慢,于是人们引入了图像二值化处理。二值化处理使得原本颜色的取值范围从256种变为2种,确实是提高了计算速度,但是丢失的信息也多了,因此具体采用什么方式处理,要根据具体情况来选择。

3、如何进行二值化处理

(1)简单阈值

简单阈值是选取一个全局阈值,然后把整幅图像分成非黑即白的二值图像,灰度值大于阈值就赋为255反之为0。

ret,mask = cv2.threshold(img2gray,175,255,cv2.THRESH_BINAR)

返回值一: 阈值,(Otsu‘s二值化会用到)
返回值二: 处理以后的图像
参数一: 初始图像
参数二:我们自己设定的阈值
参数三: 当图像像素置超过我们的设定的阈值时赋为255
参数四 : 我们设定的二值化类型

阈值 小于阈值 大于阈值
THRESH_BINARY 置0 置填充色
THRESH_BINARY_INV 置填充色 0
THRESH_TRUNC 保持原色 置灰色
THRESH_TOZERO 置0 保持原色
THRESH_TOZERO_INV 保持原色 置0

注:cv2.threshold最后一个参数可以写为0,1,2,3,4按顺序对应表格中的五种
代码如下

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('dog.jpeg', 0)  # 直接读为灰度图像
ret, thresh1 = cv2.threshold(img, 127, 255, 0)
ret, thresh2 = cv2.threshold(img, 127, 255, 1)
ret, thresh3 = cv2.threshold(img, 127, 255, 2)
ret, thresh4 = cv2.threshold(img, 127, 255, 3)
ret, thresh5 = cv2.threshold(img, 127, 255, 4)
titles = ['img', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

[2] 图像处理之----二值化处理
注:将阈值大于127的像素值置为255

(2)自适应阈值

简单阈值的方式过于粗鲁,自适应阈值更趋向于局部性的阈值,也就是说,将像素点的像素值与该点所在的区域的像素值的平均值(最大值,中位数等)决定该店属于0还是1

th2 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C,0,11,2)

返回值: 处理后返回的图像
参数一: 原始图像
参数二:像素值上限
参数三:自适应方法
— cv2.ADAPTIVE_THRESH_MEAN_C :领域内均值
—cv2.ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和
参数四:赋值方式(参考简单阈值中介绍的表格)
参数五:设定方阵的大小(因为是将一个点与其周围的方阵数据对比)
参数六:常数,每个区域计算出的阈值的基础上在减去这个常数作为这个区域的最终阈值,可以为负数



import cv2 as cv
import numpy as np


from matplotlib import pyplot as plt
img = cv.imread('dog.jpeg',0)
img = cv.medianBlur(img,5)

ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
th2 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C,0,11,2)
th3 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,0,11,2)

titles = ['Original Image', 'Global Thresholding (v = 127)',
            'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]
for i in range(4):
    plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()

[2] 图像处理之----二值化处理

(3)Otsu’s二值化

对于简单阈值,cv2.threshold()的第二个参数是我们自己设定的阈值范围,一张图片的最好的阈值分界线不是凭感觉看出来的,而是有合理的方式能找到的,threshold的第一个返回值就是处理图片的阈值分界线。因此,只要在threshold函数的最后一个参数在原有的基础上加上’cv2.THRESH_OTSU‘那么第一个返回值就是最佳阈值。直接看代码更好理解。
注:OTSU非常适合灰度直方图具有双峰值的情况

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('cat.jpg', 0)  # 直接读为灰度图像
# 简单滤波
ret1, th1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
print(ret1)
# Otsu 滤波
ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
print(ret2)

plt.figure()
plt.subplot(221), plt.imshow(img,'gray')
plt.subplot(222), plt.hist(img.ravel(), 256)  # .ravel方法将矩阵转化为一维
plt.subplot(223), plt.imshow(th1,'gray')
plt.subplot(224), plt.imshow(th2,'gray')
plt.show()

[2] 图像处理之----二值化处理

4、参考文献:

https://numpy.org/doc/stable/reference/generated/numpy.hstack.html
https://zhuanlan.zhihu.com/p/360824614
https://blog.csdn.net/jjddss/article/details/72841
https://blog.csdn.net/li_l_il/article/details/86767790
https://blog.csdn.net/JNingWei/article/details/77747959
https://blog.csdn.net/weixin_35732969/article/details/83779660

声明:部分图像源自网络,本文仅供学习交流使用,如果不妥,请联系删除。文章来源地址https://www.toymoban.com/news/detail-453233.html

到了这里,关于[2] 图像处理之----二值化处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • FPGA|数字图像处理实现口罩识别——二值化

    【写在前面】刚入门小菜鸟,记录一下口罩识别学习过程。参考文件和网址会在文末注明。有错误欢迎指出,也欢迎进行补充~ 原理图如下,二值化对应为红框里的部分 使用的二值化方法是 手动指定一个 阈值 ,通过阈值来进行二值化处理 。(还有一种方法是一个自适应阈值

    2023年04月11日
    浏览(49)
  • OpenCV常用功能——灰度处理和图像二值化处理

    1.1 cvtColor函数 函数原型: 功能 :转换图像颜色空间。 参数 : src: 输入图像。 code: 颜色空间转换代码。可以取常量cv2.COLOR_BGR2GRAY或cv2.COLOR_RGB2GRAY。 dst: 输出图像。 dstCn: 输出图像的通道数,如果设置为0,则跟随转换代码自动设置。 内置函数示例代码: 灰度处理的原理是将

    2024年02月08日
    浏览(62)
  • python图像处理实战(二)—二值化图像与线性变换

    🚀写在前面🚀 🖊个人主页:https://blog.csdn.net/m0_52051577?type=blog  🎁欢迎各位大佬支持点赞收藏,三连必回!! 🔈本人新开系列专栏—python图像处理 ❀愿每一个骤雨初晴之时,所有的蜻蜓振翅和雨后惊雷,都归你。 前言         首先引入以下灰度变换的概念。      

    2024年02月07日
    浏览(52)
  • C#使用OpenCv(OpenCVSharp)图像全局二值化处理实例

    本文实例演示C#语言中如何使用OpenCv(OpenCVSharp)对图像进行全局二值化处理。 目录 图像二值化原理 函数原型 参数说明 实例 效果

    2024年02月13日
    浏览(50)
  • C#使用OpenCv(OpenCVSharp)图像局部二值化处理实例

      本文实例演示C#语言中如何使用OpenCv(OpenCVSharp)对图像进行局部二值化处理。 目录 图像二值化原理 局部二值化 自适应阈值 实例 效果

    2024年02月13日
    浏览(55)
  • 二、FPGA实时图像处理(灰度转换、高斯滤波、二值化和边缘检测)

    基于图像实时采集系统实现图像处理 算法:采用精度为7的心理学公式:Gray = R 0.299 + G 0.587 + B 0.114, Gray = R 38 + G 75 + B 15 7 采用sobel算子进行边缘检测。 可以通过参数定义修改二值化和边缘检测阈值,以及控制是否进行图像处理和图像处理类型选择。 高斯滤波效果不明显不做演

    2024年02月11日
    浏览(53)
  • 图像二值化处理(全局阈值 自适应阈值 手动阈值操作以及直方图画法)

    图像二值化就是把让图像的像素点只有0和1(只有黑白两各种颜色,黑是背景,白是前景),关键点是寻找一个阈值T,使图像中小于阈值T的像素点变为0,大于T的像素点变为255。下面介绍的就是寻找一个图像的阈值T的方法。(主要根据直方图) retval:返回的阈值(double类型)

    2024年02月08日
    浏览(52)
  • OpenCV-Python学习(10)—— OpenCV 图像二值化处理(cv.threshold)

    1. 学习目标 理解图像的分类,不同类型的图像的区别; 对图像进行二值化处理,对【 cv.threshold 】函数的理解。 2. 图像分类 2.1 不同类型图像说明 按照颜色对图像进行分类,可以分为二值图像、灰度图像和彩色图像。 二值图像: 只有黑色和白色两种颜色的图像。 每个像素

    2024年02月03日
    浏览(74)
  • 图像处理(二值图、灰度图、彩色图像)

    图像处理之二值图像、灰度图像、RGB图像 1、二值图像 定义:二值图像是值仅仅包含黑色和白色的图像 计算机在处理时,会把黑色像素点处理为0,白色像素点处理1。由于只用一个比特位就能表示,所以称之为二值图像。 2、灰度图 为了表达更丰富的颜色细节,灰度图采用更

    2024年02月06日
    浏览(61)
  • opencv-图像处理基础-二值图像

    1.二值图像 二值图像是指仅仅包含黑色和白色两种颜色的图像。 在计算机中,通过一个栅格状排列的数据集(矩阵)来表示和处理图像。例如,图 2-1 是 一个字母 A 的图像,计算机在处理该图像时,会首先将其划分为一个个的小方块,每一个小方 块就是一个独立的处理单位

    2024年02月15日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包