21、API(算法,lambda表达式,练习)
1、常见的七种查找算法:
数据结构是数据存储的方式,算法是数据计算的方式。
1. 基本查找
也叫做顺序查找
说明:顺序查找适合于存储结构为数组或者链表。
基本思想
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。
示例代码:
public class A01_BasicSearchDemo1 {
public static void main(String[] args) {
//基本查找/顺序查找
//核心:
//从0索引开始挨个往后查找
//需求:定义一个方法利用基本查找,查询某个元素是否存在
//数据如下:{131, 127, 147, 81, 103, 23, 7, 79}
int[] arr = {
131, 127, 147, 81, 103, 23, 7, 79};
int number = 82;
System.out.println(basicSearch(arr, number));
}
//参数:
//一:数组
//二:要查找的元素
//返回值:
//元素是否存在
public static boolean basicSearch(int[] arr, int number){
//利用基本查找来查找number在数组中是否存在
for (int i = 0; i < arr.length; i++) {
if(arr[i] == number){
return true;
}
}
return false;
}
}
public class A01_BasicSearchDemo2 {
public static void main(String[] args) {
System.out.println("课堂练习1:");
//课堂练习1:
//需求:定义一个方法利用基本查找,查询某个元素在数组中的索引
//需求:不需要考虑数组中元素是否重复
int[] arr = {
131, 127, 147, 81, 103, 23, 7, 79};
int num = 81;
ArrayList list = basicSearch(arr, num);
printArrayList(arr, list);
System.out.println("课堂练习2:");
//课堂练习2:
//需求:定义一个方法利用基本查找,查询某个元素在数组中的索引
//需求:需要考虑数组中元素有重复的可能性
//{131, 127, 147, 81, 103, 23, 7, 79 , 81};
//我要查找81,想要返回的是所有索引 3 8
int[] arr2 = {
131, 127, 147, 81, 103, 23, 7, 79, 81};
ArrayList list2 = basicSearch(arr2, num);
printArrayList(arr2, list2);
}
/**
* 打印查找元素所在位置
* @param arr 数组
* @param list 集合
*/
private static void printArrayList(int[] arr, ArrayList list) {
for (int i = 0; i < list.size(); i++) {
int index = (int) list.get(i);
System.out.println("arr[" + index + "] = " + arr[index]);
}
}
/**
* 心得:如果我们要返回多个数据的话,可以把这些数据放到数组或者集合中。
* @param arr 数组
* @param number 要查找的元素
* @return 返回索引的集合
*/
public static ArrayList basicSearch(int[] arr, int number) {
ArrayList<Integer> list = new ArrayList<>();
//利用基本查找来查找number在数组中的位置
for (int i = 0; i < arr.length; i++) {
if (arr[i] == number) {
list.add(i);
}
}
return list;
}
}
2. 二分查找
也叫做折半查找
说明:元素必须是有序的,从小到大,或者从大到小都是可以的。
如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。
基本思想
基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:
-
相等
说明找到了
-
要查找的数据比中间节点小
说明要查找的数字在中间节点左边
-
要查找的数据比中间节点大
说明要查找的数字在中间节点右边
案例演示
代码示例:
public class A02_BinarySearchDemo1 {
public static void main(String[] args) {
//二分查找/折半查找
//核心:
//每次排除一半的查找范围
//需求:定义一个方法利用二分查找,查询某个元素在数组中的索引
//数据如下:{7, 23, 79, 81, 103, 127, 131, 147}
int[] arr = {
7, 23, 79, 81, 103, 127, 131, 147};
System.out.println(binarySearch(arr, 150));
}
public static int binarySearch(int[] arr, int number){
//1.定义两个变量记录要查找的范围
int min = 0;
int max = arr.length - 1;
//2.利用循环不断的去找要查找的数据
while(true){
if(min > max){
return -1;
}
//3.找到min和max的中间位置
int mid = (min + max) / 2;
//4.拿着mid指向的元素跟要查找的元素进行比较
if(arr[mid] > number){
//4.1 number在mid的左边
//min不变,max = mid - 1;
max = mid - 1;
}else if(arr[mid] < number){
//4.2 number在mid的右边
//max不变,min = mid + 1;
min = mid + 1;
}else{
//4.3 number跟mid指向的元素一样
//找到了
return mid;
}
}
}
}
总结
二分查找改进
3. 插值查找
在介绍插值查找之前,先考虑一个问题:
为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?
其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?
二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2*(high-low);
我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])*(high-low),
这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想
:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
细节:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
代码跟二分查找类似,只要修改一下mid的计算方式即可。
4. 斐波那契查找
在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。
黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。
0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。
在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….
(从第三个数开始,后边每一个数都是前两个数的和)。
然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。
基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可
代码示例:
public class FeiBoSearchDemo {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = {
1, 8, 10, 89, 1000, 1234};
System.out.println(search(arr, 1234));
}
public static int[] getFeiBo() {
int[] arr = new int[maxSize];
arr[0] = 1;
arr[1] = 1;
for (int i = 2; i < maxSize; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr;
}
public static int search(int[] arr, int key) {
int low = 0;
int high = arr.length - 1;
//表示斐波那契数分割数的下标值
int index = 0;
int mid = 0;
//调用斐波那契数列
int[] f = getFeiBo();
//获取斐波那契分割数值的下标
while (high > (f[index] - 1)) {
index++;
}
//因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐
int[] temp = Arrays.copyOf(arr, f[index]);
//实际需要使用arr数组的最后一个数来填充不足的部分
for (int i = high + 1; i < temp.length; i++) {
temp[i] = arr[high];
}
//使用while循环处理,找到key值
while (low <= high) {
mid = low + f[index - 1] - 1;
if (key < temp[mid]) {
//向数组的前面部分进行查找
high = mid - 1;
/*
对k--进行理解
1.全部元素=前面的元素+后面的元素
2.f[k]=k[k-1]+f[k-2]
因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]
即在f[k-1]的前面继续查找k--
即下次循环,mid=f[k-1-1]-1
*/
index--;
} else if (key > temp[mid]) {
//向数组的后面的部分进行查找
low = mid + 1;
index -= 2;
} else {
//找到了
//需要确定返回的是哪个下标
if (mid <= high) {
return mid;
} else {
return high;
}
}
}
return -1;
}
}
5. 分块查找
当数据表中的数据元素很多时,可以采用分块查找。
汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找文章来源:https://www.toymoban.com/news/detail-453760.html
分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找文章来源地址https://www.toymoban.com/news/detail-453760.html
分块查找
的过程:
- 需要把数据分成N多小块,块与块之间不能有数据重复的交集。
- 给每一块创建对象单独存储到数组当中
- 查找数据的时候,先在数组查,当前数据属于哪一块
- 再到这一块中顺序查找
代码示例:
public class A03_BlockSearchDemo1 {
public static void main(String[] args) {
/*
分块查找
核心思想:
块内无序,块间有序
实现步骤:
1.创建数组blockArr存放每一个块对象的信息
2.先查找blockArr确定要查找的数据属于哪一块
3.再单独遍历这一块数据即可
*/
int[] arr = {
16, 5, 9, 12, 21, 18,
32, 23, 37, 26, 45, 34,
50, 48, 61, 52, 73, 66};
//1.要把数据进行分块
//要分为几块: 18 开根号 4.24块
//18 / 4 = 4.5个
//System.out.println("arr.length = " + arr.length);
//System.out.println("Math.sqrt(arr.length) = " + Math.sqrt(arr.length));
//创建三个块的对象
Block b1 = new Block(21, 0, 5);
Block b2 = new Block(45, 6, 11);
Block b3 = new Block(73, 12, 17);
//定义数组用来管理三个块的对象(索引表)
Block[] blockArr
到了这里,关于java基础入门-12-【API(算法,lambda表达式,练习)】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!