YOLOv5+单目测距(python)

这篇具有很好参考价值的文章主要介绍了YOLOv5+单目测距(python)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

相关链接
1. YOLOV7 + 单目测距(python)
2. YOLOV5 + 单目跟踪(python)
3. YOLOV7 + 单目跟踪(python)
4. YOLOV5 + 双目测距(python)
5. YOLOV7 + 双目测距(python)
6. 具体实现效果已在Bilibili发布,点击跳转

本篇博文工程源码下载
链接1:https://download.csdn.net/download/qq_45077760/87708260
链接2:https://github.com/up-up-up-up/yolov5_Monocular_ranging

更多有关单目(尺寸测量,跟踪、碰撞检测等)的文章请见:https://blog.csdn.net/qq_45077760/category_12312107.html文章来源地址https://www.toymoban.com/news/detail-453784.html

1. 相关配置

系统:win 10
YOLO版本:yolov5 6.1
拍摄视频设备:安卓手机
电脑显卡:NVIDIA 2080Ti(CPU也可以跑,GPU只是起到加速推理效果)

2. 测距原理

单目测距原理相较于双目十分简单,无需进行立体匹配,仅需利用下边公式线性转换即可:

                                        D = (F*W)/P

其中D是目标到摄像机的距离, F是摄像机焦距(焦距需要自己进行标定获取), W是目标的宽度或者高度(行人检测一般以人的身高为基准), P是指目标在图像中所占据的像素
YOLOv5+单目测距(python)
了解基本原理后,下边就进行实操阶段

3. 相机标定

3.1:标定方法1

可以参考张学友标定法获取相机的焦距

3.2:标定方法2

直接使用代码获得焦距,需要提前拍摄一个矩形物体,拍摄时候相机固定,距离被拍摄物体自行设定,并一直保持此距离,背景为纯色,不要出现杂物;最后将拍摄的视频用以下代码检测:

import cv2

win_width = 1920
win_height = 1080
mid_width = int(win_width / 2)
mid_height = int(win_height / 2)

foc = 1990.0       # 根据教程调试相机焦距
real_wid = 9.05   # A4纸横着的时候的宽度,视频拍摄A4纸要横拍,镜头横,A4纸也横
font = cv2.FONT_HERSHEY_SIMPLEX
w_ok = 1

capture = cv2.VideoCapture('5.mp4')
capture.set(3, win_width)
capture.set(4, win_height)

while (True):
    ret, frame = capture.read()
    # frame = cv2.flip(frame, 1)
    if ret == False:
        break

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray = cv2.GaussianBlur(gray, (5, 5), 0)
    ret, binary = cv2.threshold(gray, 140, 200, 60)    # 扫描不到纸张轮廓时,要更改阈值,直到方框紧密框住纸张
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    binary = cv2.dilate(binary, kernel, iterations=2)
    contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    # cv2.drawContours(frame, contours, -1, (0, 255, 0), 2)    # 查看所检测到的轮框
    for c in contours:
        if cv2.contourArea(c) < 1000:  # 对于矩形区域,只显示大于给定阈值的轮廓,所以一些微小的变化不会显示。对于光照不变和噪声低的摄像头可不设定轮廓最小尺寸的阈值
            continue

        x, y, w, h = cv2.boundingRect(c)  # 该函数计算矩形的边界框

        if x > mid_width or y > mid_height:
            continue
        if (x + w) < mid_width or (y + h) < mid_height:
            continue
        if h > w:
            continue
        if x == 0 or y == 0:
            continue
        if x == win_width or y == win_height:
            continue

        w_ok = w
        cv2.rectangle(frame, (x + 1, y + 1), (x + w_ok - 1, y + h - 1), (0, 255, 0), 2)

    dis_inch = (real_wid * foc) / (w_ok - 2)
    dis_cm = dis_inch * 2.54
    # os.system("cls")
    # print("Distance : ", dis_cm, "cm")
    frame = cv2.putText(frame, "%.2fcm" % (dis_cm), (5, 25), font, 0.8, (0, 255, 0), 2)
    frame = cv2.putText(frame, "+", (mid_width, mid_height), font, 1.0, (0, 255, 0), 2)

    cv2.namedWindow('res', 0)
    cv2.namedWindow('gray', 0)
    cv2.resizeWindow('res', win_width, win_height)
    cv2.resizeWindow('gray', win_width, win_height)
    cv2.imshow('res', frame)
    cv2.imshow('gray', binary)

    c = cv2.waitKey(40)
    if c == 27:    # 按退出键esc关闭窗口
        break

cv2.destroyAllWindows()

反复调节 ret, binary = cv2.threshold(gray, 140, 200, 60)这一行里边的三个参数,直到线条紧紧包裹住你所拍摄视频的物体,然后调整相机焦距直到左上角距离和你拍摄视频时相机到物体的距离接近为止
YOLOv5+单目测距(python)
然后将相机焦距写进测距代码distance.py文件里,这里行人用高度表示,根据公式 D = (F*W)/P,知道相机焦距F、行人的高度66.9(单位英寸→170cm/2.54)、像素点距离 h,即可求出相机到物体距离D。 这里用到h-2是因为框的上下边界像素点不接触物体

foc = 1990.0        # 镜头焦距
real_hight_person = 66.9   # 行人高度
real_hight_car = 57.08      # 轿车高度

# 自定义函数,单目测距
def person_distance(h):
    dis_inch = (real_hight_person * foc) / (h - 2)
    dis_cm = dis_inch * 2.54
    dis_cm = int(dis_cm)
    dis_m = dis_cm/100
    return dis_m

def car_distance(h):
    dis_inch = (real_hight_car * foc) / (h - 2)
    dis_cm = dis_inch * 2.54
    dis_cm = int(dis_cm)
    dis_m = dis_cm/100
    return dis_m

4. 相机测距

4.1 测距添加

主要是把测距部分加在了画框附近,首先提取边框的像素点坐标,然后计算边框像素点高度,在根据 公式 D = (F*W)/P 计算目标距离

 for *xyxy, conf, cls in reversed(det):


     if save_txt:  # Write to file
         xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
         line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
         with open(txt_path + '.txt', 'a') as f:
             f.write(('%g ' * len(line)).rstrip() % line + '\n')

     if save_img or save_crop or view_img:  # Add bbox to image
         x1 = int(xyxy[0])   #获取四个边框坐标
         y1 = int(xyxy[1])
         x2 = int(xyxy[2])
         y2 = int(xyxy[3])
         h = y2-y1
         if names[int(cls)] == "person":
             c = int(cls)  # integer class  整数类 1111111111
             label = None if hide_labels else (
                 names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
             dis_m = person_distance(h)   # 调用函数,计算行人实际高度
             label += f'  {dis_m}m'       # 将行人距离显示写在标签后
             txt = '{0}'.format(label)
             annotator.box_label(xyxy, txt, color=colors(c, True))
         if names[int(cls)] == "car":
             c = int(cls)  # integer class  整数类 1111111111
             label = None if hide_labels else (
                 names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
             dis_m = car_distance(h)      # 调用函数,计算汽车实际高度
             label += f'  {dis_m}m'       # 将汽车距离显示写在标签后
             txt = '{0}'.format(label)
             annotator.box_label(xyxy, txt, color=colors(c, True))

         if save_crop:
             save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

4.2 细节修改(可忽略)

到上述步骤就已经实现了单目测距过程,下边是一些小细节修改,可以不看
为了实时显示画面,对运行的py文件点击编辑配置,在形参那里输入–view-img --save-txt
YOLOv5+单目测距(python)
但实时显示画面太大,我们对显示部分做了修改,这部分也可以不要,具体是把代码

if view_img:
      cv2.imshow(str(p), im0)
      cv2.waitKey(1)  # 1 millisecond

替换成

if view_img:
     cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
     cv2.resizeWindow("Webcam", 1280, 720)
     cv2.moveWindow("Webcam", 0, 100)
     cv2.imshow("Webcam", im0)
     cv2.waitKey(1)

4.3 主代码

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run inference on images, videos, directories, streams, etc.

Usage - sources:
    $ python path/to/detect.py --weights yolov5s.pt --source 0              # webcam
                                                             img.jpg        # image
                                                             vid.mp4        # video
                                                             path/          # directory
                                                             path/*.jpg     # glob
                                                             'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                                                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:
    $ python path/to/detect.py --weights yolov5s.pt                 # PyTorch
                                         yolov5s.torchscript        # TorchScript
                                         yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                         yolov5s.xml                # OpenVINO
                                         yolov5s.engine             # TensorRT
                                         yolov5s.mlmodel            # CoreML (MacOS-only)
                                         yolov5s_saved_model        # TensorFlow SavedModel
                                         yolov5s.pb                 # TensorFlow GraphDef
                                         yolov5s.tflite             # TensorFlow Lite
                                         yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
"""

import argparse
import os
import sys
from pathlib import Path

import cv2
import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
from distance import person_distance,car_distance

@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        ):
    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):


                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        x1 = int(xyxy[0])
                        y1 = int(xyxy[1])
                        x2 = int(xyxy[2])
                        y2 = int(xyxy[3])
                        h = y2-y1
                        if names[int(cls)] == "person":
                            c = int(cls)  # integer class  整数类 1111111111
                            label = None if hide_labels else (
                                names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
                            dis_m = person_distance(h)
                            label += f'  {dis_m}m'
                            txt = '{0}'.format(label)
                            # annotator.box_label(xyxy, txt, color=(255, 0, 255))
                            annotator.box_label(xyxy, txt, color=colors(c, True))
                        if names[int(cls)] == "car":
                            c = int(cls)  # integer class  整数类 1111111111
                            label = None if hide_labels else (
                                names[c] if hide_conf else f'{names[c]} {conf:.2f}')  # 111
                            dis_m = car_distance(h)
                            label += f'  {dis_m}m'
                            txt = '{0}'.format(label)
                            # annotator.box_label(xyxy, txt, color=(255, 0, 255))
                            annotator.box_label(xyxy, txt, color=colors(c, True))

                        if save_crop:
                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Stream results
            im0 = annotator.result()
            '''if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond'''
            if view_img:
                cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)
                cv2.resizeWindow("Webcam", 1280, 720)
                cv2.moveWindow("Webcam", 0, 100)
                cv2.imshow("Webcam", im0)
                cv2.waitKey(1)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
    parser.add_argument('--source', type=str, default=ROOT / 'data/images/1.mp4', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

5. 实验效果

实验效果如下

更多有关单目(尺寸测量,跟踪、碰撞检测等)的文章请见:https://blog.csdn.net/qq_45077760/category_12312107.html

到了这里,关于YOLOv5+单目测距(python)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • yolov5车道线检测+测距(碰撞检测)

    相关链接 1. 基于yolov5的车道线检测及安卓部署 2. YOLOv5#

    2024年02月08日
    浏览(39)
  • YOLOv5车辆测距实践:利用目标检测技术实现车辆距离估算

    YOLOv5目标检测技术进行车辆测距。相信大家对YOLOv5已经有所了解,它是一种快速且准确的目标检测算法。接下来,让我们一起探讨如何通过YOLOv5实现车辆距离估算。这次的实践将分为以下几个步骤: 安装所需库和工具 数据准备 模型训练 距离估算 可视化结果 优化 1. 安装所需

    2024年02月02日
    浏览(50)
  • yolov8/yolov5-车辆测距+前车碰撞预警(追尾预警)+车辆检测识别+车辆跟踪测速(算法-毕业设计)

    本项目效果展示视频: https://www.bilibili.com/video/BV14d4y177vE/?spm_id_from=333.999.0.0vd_source=8c532ded7c7c9041f04e35940d11fdae 1、本项目通过yolov8/yolov7/yolov5和deepsort实现了一个自动驾驶领域的追尾前车碰撞预警系统,可为一些同学的课设、大作业等提供参考。分别实现了自行车、汽车、摩托车

    2024年02月06日
    浏览(56)
  • 单目相机测距(3米范围内)二维码实现方案(python代码 仅仅依赖opencv)

    总体思路:先通过opencv 识别二维码的的四个像素角位置,然后把二维码的物理位置设置为 ,相当于这是一个任意找的物体上的四个点,对应的我们找到了在图像中对应的像素坐标。这就解决了世界坐标系与像素坐标系之间的对应问题,然后再通过PNP求解的方式,就可以通过

    2024年02月04日
    浏览(46)
  • yolov8/yolov7/yolov5-车辆测距+前车碰撞预警(追尾预警)+车辆检测识别+车辆跟踪测速(算法-毕业设计)

    本项目效果展示视频: https://www.bilibili.com/video/BV14d4y177vE/?spm_id_from=333.999.0.0vd_source=8c532ded7c7c9041f04e35940d11fdae 1、本项目通过yolov8/yolov7/yolov5和deepsort实现了一个自动驾驶领域的追尾前车碰撞预警系统,可为一些同学的课设、大作业等提供参考。分别实现了自行车、汽车、摩托车

    2024年02月04日
    浏览(62)
  • 项目设计:YOLOv5目标检测+机构光相机(intel d455和d435i)测距

    1.1  Intel D455 Intel D455 是一款基于结构光(Structured Light)技术的深度相机。 与ToF相机不同,结构光相机使用另一种方法来获取物体的深度信息。它通过投射可视光谱中的红外结构光图案,然后从被拍摄物体表面反射回来的图案重建出其三维形状和深度信息。 Intel D455 深度相机

    2024年02月08日
    浏览(47)
  • 【单目测距】3D检测框测距

    3D 检测模型用的 fcos3D。 如何对 3D 框测距 ? 3D 检测框测距对比 2D 检测框测距优势在哪? (1) 横向测距偏差。当目标有一定倾斜角度时,尤其近距离目标。如下图id = 0目标白车,如果是2D检测框测距,会误认为车尾在点 A 处,而实际应该在图像最左侧外部 (2) 无法测量目标的本身

    2024年01月23日
    浏览(41)
  • 单目测距(yolo目标检测+标定+测距代码)

    实时感知本车周围物体的距离对高级驾驶辅助系统具有重要意义,当判定物体与本车距离小于安全距离时便采取主动刹车等安全辅助功能,这将进一步提升汽车的安全性能并减少碰撞的发生。上一章本文完成了目标检测任务,接下来需要对检测出来的物体进行距离测量。首先

    2023年04月17日
    浏览(36)
  • 单目测距终于摆脱了参考物,实现单目测距、检测物体大小,增加了实验数据,效果很好

    🥇版权:本文由作者【 Brson.AI 】原创首发、各位读者大大敬请查阅、感谢三连🎉🎉🎉 🏆声明:作为大脑的儿子AI,专注于分享更多AI知识干货给大家🌞 🏅文章若有错误之处请大方指出,我会认真改正,谢谢各位看官❤️ 📆最近一直在捣腾关于 单目测距 和 检测物体大小

    2024年02月06日
    浏览(48)
  • 单目测距实战

    单目测距是通过使用单个摄像头捕获的图像信息俩估计物体的距离。这是一种在计算机领域广泛研究的问题,并且困难之处在于从2d图像中恢复3d信息。 单目测距常用的或者是实用方法是相似三角形法。 相似三角形法:假设有一个宽度为w的目标的或者物体。然后,我们用相机

    2024年01月25日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包