yolov5剪枝与知识蒸馏【附代码】

这篇具有很好参考价值的文章主要介绍了yolov5剪枝与知识蒸馏【附代码】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

剪枝和知识蒸馏均属于模型轻量化设计,剪枝是将已有网络通过剪枝的手段得到轻量化网络,可分为非结构化剪枝结构化剪,该技术可以免去人为设计轻量网络,而是通过计算各个权重或者通道的贡献度大小,剪去贡献度小的权重或通道,再经过微调训练恢复精度,得到最终的模型,这种方法自然也是可以的,但在某些任务中,如果剪枝较多效果会很差,即便微调训练也恢复不了多少精度。

本文所用到的剪枝是通道剪枝(结构化剪枝),可以参考我另外一篇博客(这篇文章被多个开源社区收藏,所以值得一试):YOLOv5通道剪枝,同时在我其他博客中还实现了YOLOV4YOLOXYOLORYOLOV7等剪枝,欢迎点赞收藏。

知识蒸馏是在一个精度高的大模型和一个精度低的小模型之间建立损失函数,将大模型"压缩"到小模型中【并不是严格意义上的压缩】。这也是近两年用的比较多的手段,之前的知识的蒸馏均是在分类网络中进行,现在也开始应用于目标检测。分类网络的知识蒸馏可以参考:知识蒸馏,自蒸馏

目标检测的知识蒸馏参考:SSD知识蒸馏

知识蒸馏的蒸馏方式有在线式和离线式,还可分为特征蒸馏和逻辑蒸馏。在这里我公布的代码是离线式的逻辑蒸馏。

目录

项目说明

环境说明

1.训练自己的数据集

2.对任意卷积层进行剪枝

3.剪枝后的训练

4.剪枝后的模型预测

5.知识蒸馏训练

代码


项目说明

1.训练自己的数据集

2.对任意卷积层进行剪枝

3.剪枝后的训练

4.剪枝后的模型预测

5.利用知识蒸馏对剪枝后模型进行训练

环境说明

gitpython>=3.1.30
matplotlib>=3.3
numpy>=1.18.5
opencv-python>=4.1.1
Pillow>=7.1.2
psutil  # system resources
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
thop>=0.1.1  # FLOPs computation
torch>=1.7.0  # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.8.1
tqdm>=4.64.0
ultralytics>=8.0.100
torch_pruning==0.2.7
pandas>=1.1.4
seaborn>=0.11.0

1.训练自己的数据集

将自己制作好的数据集放在dataset文件下,目录形式如下:

dataset

|-- Annotations

|-- ImageSets

|-- images

|-- labels

 Annotations是存放xml标签文件的images是存放图像的ImageSets存放四个txt文件【后面运行代码的时候会自动生成】,labels是将xml转txt文件。

1.运行makeTXT.py。这将会在ImageSets文件夹下生成 trainval.txt,test.txt,train.txt,val.txt四个文件【如果你打开这些txt文件,里面仅有图像的名字】。

2.打开voc_label.py,并修改代码 classes=[""]填入自己的类名,比如你的是训练猫和狗,那么就是classes=["dog","cat"],然后运行该程序。此时会在labels文件下生成对应每个图像的txt文件,形式如下:【最前面的0是类对应的索引,我这里只有一个类,后面的四个数为box的参数,均归一化以后的,分别表示box的左上和右下坐标,等训练的时候会处理成center_x,center_y,w, h】。形式如下。

0 0.4723557692307693 0.5408653846153847 0.34375 0.8990384615384616
0 0.8834134615384616 0.5793269230769231 0.21875 0.8221153846153847 

3.在data文件夹下新建一个mydata.yaml文件。内容如下【你也可以把coco.yaml复制过来】。

你只需要修改nc以及names即可,nc是类的数量,names是类的名字。

train: ./dataset/train.txt
val: ./dataset/val.txt
test: ./dataset/test.txt

# number of classes
nc: 1

# class names
names: ['target']

4.终端输入参数,开始训练。

以yolov5s为例:

python train.py --weights yolov5s.pt --cfg models/yolov5s.yaml --data data/mydata.yaml

from n params module arguments 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] 2 -1 1 18816 models.common.C3 [64, 64, 1] 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] 4 -1 2 115712 models.common.C3 [128, 128, 2] 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] 6 -1 3 625152 models.common.C3 [256, 256, 3] 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] 8 -1 1 1182720 models.common.C3 [512, 512, 1] 9 -1 1 656896 models.common.SPPF [512, 512, 5] 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] 12 [-1, 6] 1 0 models.common.Concat [1] 13 -1 1 361984 models.common.C3 [512, 256, 1, False] 20 -1 1 296448 models.common.C3 [256, 256, 1, False] 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] 22 [-1, 10] 1 0 models.common.Concat [1] 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] 24 [17, 20, 23] 1 16182 models.yolo.Detect [1, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]] Model Summary: 270 layers, 7022326 parameters, 7022326 gradients, 15.8 GFLOPs

Starting training for 300 epochs...

Epoch gpu_mem box obj cls labels img_size 0/299 0.589G 0.0779 0.03841 0 4 640: 6%|████▋ | 23/359 [00:23<04:15, 1.31it/s]

 看到以上信息就开始训练了。

2.对任意卷积层进行剪枝

在利用剪枝功能前,需要安装一下剪枝的库。需要安装0.2.7版本,0.2.8有粉丝说有问题。剪枝时的一些log信息会自动保存在logs文件夹下,每个log的大小我设置的为1MB,如果有其他需要大家可以更改。

pip install torch_pruning==0.2.7

YOLOv5与我之前写过的剪枝不同,v5在训练保存后的权重本身就保存了完整的model,即用的是torch.save(model,...),而不是torch.save(model.state_dict(),...),因此不需要单独在对网络结构保存一次。

模型剪枝代码在tools/prunmodel.py。你只需要找到这部分代码进行修改:我这里是以剪枝整个backbone的卷积层为例,如果你要剪枝的是其他层按需修改.included_layers内就是你要剪枝的层。

    """
    这里写要剪枝的层
    """
    included_layers = []
    for layer in model.model[:10]:
        if type(layer) is Conv:
            included_layers.append(layer.conv)
        elif type(layer) is C3:
            included_layers.append(layer.cv1.conv)
            included_layers.append(layer.cv2.conv)
            included_layers.append(layer.cv3.conv)
        elif type(layer) is SPPF:
            included_layers.append(layer.cv1.conv)
            included_layers.append(layer.cv2.conv)

接下来在找到下面这行代码,amount为剪枝率,同样也是按需修改。【这里需要明白的一点,这里的剪枝率仅是对你要剪枝的所有层剪枝这么多,并不是把网络从头到尾全部剪,有些粉丝说我选了一层,剪枝率50%,怎么模型还那么大,没啥变化,这个就是他搞混了,他以为是对整个网络剪枝50%】。

pruning_plan = DG.get_pruning_plan(m, tp.prune_conv, idxs=strategy(m.weight, amount=0.8))

 接下来调用剪枝函数,传入参数为自己的训练好的权重文件路径。

layer_pruning('../runs/train/exp/weights/best.pt')

见到如下形式,就说明剪枝成功了,剪枝以后的权重会保存在model_data下,名字为layer_pruning.pt。

这里需要说明一下,保存的权重文件中不仅包含了网络结构和权值内容,还有优化器的权值,如果仅仅保存网络结构和权值也是可以的,这样pt会更小一点,我这里默认都保存是为了和官方pt格式一致。

-------------
[ <DEP: prune_conv => prune_conv on model.9.cv2.conv (Conv2d(208, 512, kernel_size=(1, 1), stride=(1, 1), bias=False))>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=85072]
[ <DEP: prune_conv => prune_batchnorm on model.9.cv2.bn (BatchNorm2d(512, eps=0.001, momentum=0.03, affine=True, track_running_stats=True))>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=818]
[ <DEP: prune_batchnorm => _prune_elementwise_op on _ElementWiseOp()>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=0]
[ <DEP: _prune_elementwise_op => _prune_elementwise_op on _ElementWiseOp()>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=0]
[ <DEP: _prune_elementwise_op => prune_related_conv on model.10.conv (Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False))>, Index=[0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 95, 96, 97, 99, 100, 102, 103, 104, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 132, 133, 135, 137, 139, 142, 143, 144, 146, 148, 150, 152, 153, 154, 155, 156, 157, 158, 159, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 173, 174, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 215, 216, 217, 219, 220, 221, 222, 223, 224, 225, 226, 228, 229, 230, 232, 233, 234, 235, 236, 237, 239, 240, 241, 242, 243, 246, 247, 248, 249, 251, 252, 253, 254, 257, 258, 259, 260, 263, 264, 265, 266, 267, 268, 270, 271, 272, 273, 274, 275, 276, 277, 278, 280, 281, 282, 283, 284, 285, 286, 287, 288, 292, 293, 294, 295, 296, 297, 299, 301, 302, 303, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 317, 318, 321, 322, 323, 324, 325, 326, 327, 329, 330, 331, 332, 334, 335, 338, 339, 341, 342, 343, 344, 346, 347, 349, 351, 353, 354, 355, 356, 357, 358, 359, 361, 362, 363, 364, 365, 366, 368, 369, 370, 372, 373, 374, 375, 378, 379, 381, 382, 383, 385, 386, 387, 388, 389, 390, 391, 392, 393, 395, 396, 397, 398, 399, 401, 402, 403, 404, 405, 407, 408, 411, 413, 414, 415, 416, 418, 419, 420, 421, 422, 423, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 440, 441, 442, 443, 444, 445, 446, 448, 449, 451, 452, 453, 454, 455, 456, 457, 458, 459, 461, 463, 465, 466, 468, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 482, 483, 484, 485, 486, 487, 488, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 502, 503, 505, 506, 507, 510, 511], NumPruned=104704]
190594 parameters will be pruned
-------------

2022-09-29 12:30:50.396 | INFO     | __main__:layer_pruning:75 -   Params: 7022326 => 3056461

2022-09-29 12:30:50.691 | INFO     | __main__:layer_pruning:89 - 剪枝完成

 如果你仅仅就想剪一层,可以这样写:

included_layers = [model.model[3].conv] # 仅仅想剪一个卷积层

3.剪枝后的训练

这里需要和稀疏训练区别一下,因为很多人在之前项目中问我有没有稀疏训练。我这里的通道剪枝是离线式的,也就是针对已经训练好的模型进行剪枝,而边训练边剪枝是在线式剪枝,这个训练过程也就是稀疏训练,所以还是有区别的。

训练后的剪枝训练与训练部分是一样的,只不过加一个pt参数而已。命令如下:

python train.py --weights model_data/layer_pruning.pt --data data/mydata.yaml --pt 

4.剪枝后的模型预测

剪枝后的预测,和正常预测一样。

python detect.py --weights model_data/layer_pruning.pt --source [你的图像路径]

这里再说明一下!!本文章只是给大家造个轮子,具体最终的剪枝效果,需要根据自己的需求以及实际效果来实现,我对整个backbone剪枝80%后的微调训练反正是效果很不好,对SPPF后其他的层剪枝还稍微好点,网上也有很多人说对backbone剪枝效果不行。

5.知识蒸馏训练

项目需求:想用知识蒸馏做剪枝后网络的微调训练

教师网络:未剪枝前的

学生网络:剪枝后的

由于学生网络是剪枝后的,因此可以脱离模型的yaml配置文件。

本项目的知识蒸馏是逻辑蒸馏(没有做特征层的蒸馏)。

模型实例化代码

s_ckpt = torch.load(s_weights, map_location=device)
s_model = s_ckpt['model']  # 学生网络

# 教师网络的创建
t_ckpt = torch.load(t_weights, map_location=device)
t_model = Model(t_cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # teacher model create

蒸馏的关键代码

其中d_weight是蒸馏权重。可以根据自己的实际情况调整。

s_pred = s_model(imgs)  # student forward
_, t_pred = t_model(imgs)  # teacher forward
s_hard_loss, loss_items = compute_loss(s_pred, targets.to(device))  # student hard loss
d_outputs_loss = compute_distillation_output_loss(s_pred, t_pred, s_model, d_weight=10)
loss = d_outputs_loss + s_hard_loss

--t_weights:教师网络权重路径

--s_weights:学生网络权重路径

--data:data.yaml路径

--kd:开启蒸馏训练

python train_dil.py --t_weights best.pt --s_weights layer_pruning.pt --data data/mydata.yaml --batch-size 16 --kd

训练后的结果会保存在runs/train/exp_kd中


代码

GitHub - YINYIPENG-EN/Knowledge_distillation_Pruning_Yolov5: 本项目支持对剪枝后的yolov5模型进行知识蒸馏训练(This project supports knowledge distillation training for the pruned YOLOv5 model)


补充说明:测试效果要根据实际应用场景、数据集、网络模型等有关,本文章发布的代码并不是万能的~ 


2024.01.28更新功能:添加了用已训练好的模型自动标注数据集,欢迎使用文章来源地址https://www.toymoban.com/news/detail-454357.html

到了这里,关于yolov5剪枝与知识蒸馏【附代码】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【深度学习之模型优化】模型剪枝、模型量化、知识蒸馏概述

            模型部署优化这个方向其实比较宽泛。从模型完成训练,到最终将模型部署到实际硬件上,整个流程中会涉及到很多不同层面的工作,每一个环节对技术点的要求也不尽相同。但本质的工作无疑是通过减小模型大小,提高推理速度等,使得模型能够成功部署在各个硬

    2024年01月23日
    浏览(51)
  • YOLOv5剪枝✂️| 模型剪枝实战篇

    本篇博文所用代码为开源项目修改得到,且不适合基础太差的同学。 本篇文章主要讲解代码的使用方式,手把手带你实现YOLOv5模型剪枝操作。 0. 环境准备 终端键入:

    2024年02月05日
    浏览(54)
  • yolov5s模型剪枝详细过程(v6.0)

    本文参考github上大神的开源剪枝项目进行学习与分享,具体链接放在文后,希望与大家多多交流! 在官方源码上训练yolov5模型,支持v6.0分支的n/s/m/l模型,我这里使用的是v5s,得到后将项目clone到本机上 cd进入文件夹后,新建runs文件夹,将训练好的模型放入runs/your_train/weigh

    2024年02月03日
    浏览(43)
  • 从0开始做yolov5模型剪枝

    【整个流程中,在正常train,sparityTrain,prune,finetune遇到10多个的问题,包括AttributeError、ModuleNotFoundError、RuntimeError、SyntaxError、TypeError等问题的解决方法,详见内容】 为了将现有模型移植到ARM平台,同时保证模型准确率的基础上,减少模型的算力消耗和推理时间。 之前有做

    2024年02月11日
    浏览(52)
  • 改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)

    2022.10.30 复现TPH-YOLOv5 2022.10.31 完成替换backbone为Ghostnet 2022.11.02 完成替换backbone为Shufflenetv2 2022.11.05 完成替换backbone为Mobilenetv3Small 2022.11.10 完成EagleEye对YOLOv5系列剪枝支持 2022.11.14 完成MQBench对YOLOv5系列量化支持 2022.11.16 完成替换backbone为EfficientNetLite-0 2022.11.26 完成替换backbone为

    2024年01月17日
    浏览(68)
  • Yolov5口罩佩戴实时检测项目(模型剪枝+opencv+python推理)

    如果只是想体验项目,请直接跳转到本文第2节,或者跳转到我的facemask_detect。 剪枝的代码可以查看我的github:yolov5-6.2-pruning 第1章是讲述如何得到第2章用到的onnx格式的模型文件(我的项目里直接提供了这个文件)。 第2章开始讲述如何使用cv2.dnn加载onnx文件并推理yolov5n模型

    2023年04月08日
    浏览(42)
  • yolov8(目标检测、图像分割、关键点检测)知识蒸馏:logit和feature-based蒸馏方法的实现

    在目标检测中,知识蒸馏的原理主要是利用教师模型(通常是大型的深度神经网络)的丰富知识来指导学生模型(轻量级的神经网络)的学习过程。通过蒸馏,学生模型能够在保持较高性能的同时,减小模型的复杂度和计算成本。 知识蒸馏实现的方式有多种,但核心目标是将

    2024年04月28日
    浏览(80)
  • 量化、蒸馏、分解、剪枝

            量化、蒸馏、分解和剪枝都是用于深度学习模型压缩和优化的算法。          量化 是一种用于减少深度学习模型计算量和内存消耗的技术。在深度学习中,模型通常使用高精度的浮点数表示参数和激活值,但这种表示方式会占用大量的内存和计算资源。而量

    2024年02月05日
    浏览(39)
  • 知识蒸馏实战代码教学二(代码实战部分)

            (1)首先我们要先训练出较大模型既teacher模型。(在图中没有出现)         (2)再对teacher模型进行蒸馏,此时我们已经有一个训练好的teacher模型,所以我们能很容易知道teacher模型输入特征x之后,预测出来的结果teacher_preds标签。         (3)此时,求到老师

    2024年02月20日
    浏览(34)
  • 知识蒸馏实战代码教学一(原理部分)

            知识蒸馏(Knowledge Distillation)源自于一篇由Hinton等人于2015年提出的论文《Distilling the Knowledge in a Neural Network》。这个方法旨在将一个大型、复杂的模型的知识(通常称为教师模型)转移到一个小型、简化的模型(通常称为学生模型)中。通过这种方式,学生模型

    2024年02月20日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包