高效学习传感器|霍尔式传感器

这篇具有很好参考价值的文章主要介绍了高效学习传感器|霍尔式传感器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

高效学习传感器|霍尔式传感器

01、霍尔式传感器的工作原理

1●霍尔效应

霍尔式传感器的物理基础是霍尔效应。如图1所示,在一块长度为l、宽度为b、厚度为d的长方体导电板上,左、右、前、后侧面都安装上电极。在长度方向上通入电流I,在厚度方向施加磁感应强度为B的磁场。

高效学习传感器|霍尔式传感器

■ 图1 霍尔效应示意图

导电板中的自由电子沿电流反方向作定向移动,平均速度为v。在磁场的作用下,电子受到洛伦兹力的作用。每个电子受到洛伦兹力fL的大小为

高效学习传感器|霍尔式传感器

其中,e是一个电子的电荷量,e=1.6×10-19C。根据左手定则,可以判断出洛伦兹力fL的方向由外向里。

电子除了作定向移动外,还在洛伦兹力的作用下向里飘移,结果在导电板的里表面积累了电子,在外表面积累了正电荷,这样,导电板中就形成了附加电场EH,称为霍尔电场。

在霍尔电场的作用下,电子将受到一个与洛仑兹力方向相反的电场力

高效学习传感器|霍尔式传感器

的作用,这个力阻止电荷的继续积聚。当导电板中电子积累达到动态平衡时,电荷不再增加,电子所受的洛仑兹力和电场力大小相等,即

高效学习传感器|霍尔式传感器

化简得

高效学习传感器|霍尔式传感器

这时,在导电板的外表面与里表面就产生电势差,大小为

高效学习传感器|霍尔式传感器

把公式带入得:

高效学习传感器|霍尔式传感器

当载流导体或半导体处在与电流垂直的磁场时,在其与电流方向、磁场方向都垂直的两端将产生电位差,这一现象称为霍尔效应,霍尔效应产生的电动势称为霍尔电动势,长方体导电板称为霍尔片。霍尔效应是运动电荷受磁场中洛伦兹力作用的结果,基于霍尔效应的传感器称为霍尔式传感器。

由以上公式可见,霍尔电动势UH与磁感应强度B成线性关系,因此,通过测量UH可以得到B。这就是霍尔传感器的工作原理。

1879年,美国物理学家霍尔(Edwin H. Hall,1855-1938)在研究金属导电机制时发现了霍尔效应,但是,由于金属材料的霍尔效应太弱,霍尔效应没有得到应用。随着半导体技术、材料科学和电子技术的发展,使用半导体材料制作的霍尔片具有明显的霍尔效应,并且出现了高强度的恒定磁体以及工作于小电压输出的信号调节电路,霍尔式传感器迅速发展起来了。霍尔式传感器用于测量电磁、电力、加速度、振动等物理量,应用非常广泛。例如,汽车上就使用了多种霍尔式传感器。

2●霍尔灵敏度

设导电板中自由电子浓度为n,电子定向运动的平均速度为v,则电流的大小为

高效学习传感器|霍尔式传感器

霍尔片在单位控制电流和单位磁感应强度时产生的霍尔电动势,称为霍尔灵敏度,记为KH,即

高效学习传感器|霍尔式传感器

代入公式,得

高效学习传感器|霍尔式传感器

从公式可见,霍尔灵敏度与霍尔片的厚度d成反比,因此,常把霍尔片做成薄片状,其厚度一般为0.1~0.2mm。另外,霍尔灵敏度还与自由电子浓度n成反比。因为金属的自由电子浓度过高,所以,金属不适合用于制作霍尔片。

在使用霍尔传感器进行测量时,常用恒压源提供激励电流,电源电压是一个常量,U=El。设霍尔片材料的迁移率为μ,则电子在电场中的平均迁移速度为v=μE,从而有

高效学习传感器|霍尔式传感器

结合以上公式可得:

高效学习传感器|霍尔式传感器

从以上公式可见,霍尔灵敏度与载流子的迁移率µ成正比。因为电子迁移率远大于空穴,所以,常用N型半导体材料制作霍尔片。

3●霍尔元件

霍尔元件的结构如图2所示,由霍尔片、4根引线和壳体组成。在霍尔片长度方向的两侧焊有两根控制电流引线“输入1”和“输入2”,它们在薄片上的焊点称为激励电极。在霍尔片宽度方向的两侧焊有两根输出引线“输出1”和“输出2”,它们在薄片上的焊点称为霍尔电极。霍尔元件的壳体用非导磁金属、陶瓷或环氧树脂封装而成。

高效学习传感器|霍尔式传感器

■ 图2 霍尔元件的结构

霍尔元件的外形和符号如图3所示,其中,a、b是激励电极,c、d是霍尔电极。

高效学习传感器|霍尔式传感器

■ 图3 霍尔元件的外形和符号

4●霍尔元件的基本特性

(1)输出特性

某些霍尔元件在恒流源的驱动下,其霍尔电动势UH与磁感应强度B成线性关系,输出为模拟量,如图4(1)所示。具有线性特性的霍尔元件称为霍尔线性器件。磁通计中的传感器大多采用具有线性特性的霍尔元件。

有些霍尔元件在恒压源的驱动下,其霍尔电动势UH在一定区域内随B的增加迅速增加,如图4(2)所示。通过数据处理,可以使输出转化为数字量,使其具有开关特性,相应的霍尔元件称为霍尔开关器件。开关特性随磁体本身材料及形状的不同而不同,低磁场时,磁通饱和。对直流无刷电动机的控制,一般采用霍尔开关器件。

高效学习传感器|霍尔式传感器

(1)恒流源驱动 (2)恒压源驱动

■ 图4 霍尔元件的输出特性

(2)负载特性

前面叙述的霍尔电动势的线性特性,是在霍尔电极之间为开路,或测量仪表阻抗为无穷大的情况下得到的。当霍尔电极之间接有负载时,就有电流流过内阻,从而产生压降,因此,实际的霍尔电动势将比理论值略小。

(3)不等位电动势

以上公式可以改写为

高效学习传感器|霍尔式传感器

从公式可见,当未加磁场时,霍尔电动势UH应该为0。但是,在实际使用中,由于霍尔电极安装位置不对称或不在同一个等电位上,半导体材料不均匀造成电阻率不均匀,霍尔片几何尺寸不对称,或者激励电极接触不良造成激励电流分配不均匀等原因,霍尔元件存在一定的输出电压,称为不等位电动势。

(4)温度特性

半导体材料受温度影响比较大,因此,用半导体材料制成的霍尔元件也会受温度的影响。温度将影响霍尔元件的霍尔电动势、霍尔灵敏度、输入阻抗和输出阻抗等参数。

5●霍尔元件的误差补偿

(1)不等位电动势的补偿

不等位电动势与霍尔电动势具有相同的数量级,有时甚至超过霍尔电动势,因此,必须采取措施进行消除。不等位电动势的补偿电路如图5所示。

高效学习传感器|霍尔式传感器

(1)不对称补偿 (2)对称补偿

■ 图5 不等位电动势的补偿电路

霍尔元件可以等效为一个四臂电桥,当存在不等位电动势时,说明电桥不平衡,四个电阻值不相等。为了使电桥平衡,可以采用两种补偿方法。第一种方法是在电桥阻值较大的桥臂上并联电阻,称为不对称补偿,这种方法比较简单。第二种方法是在电桥两个桥臂上同时并联电阻,称为对称补偿,补偿后的温度稳定性较好。

采用补偿电阻的方法来消除霍尔元件的不等位电势,补偿电路比较简单,但是,这种方法会影响霍尔元件的霍尔灵敏度和精度。

(2)温度误差补偿

温度变化会引起霍尔元件输入电阻的变化,从而引起激励电流的变化,结果导致霍尔电动势的变化。如果采用恒流源作为激励电流,可以减小温度误差。但是,温度变化也会引起霍尔灵敏度的变化。当温度发生变化时,霍尔灵敏度与温度变化的关系为

高效学习传感器|霍尔式传感器

其中,KH0为温度T0时的灵敏度,ΔT=T-T0为温度的增量,γ为霍尔灵敏度的温度系数。此时,霍尔电压将变为

高效学习传感器|霍尔式传感器

当温度发生变化时,磁场强度不随温度的变化而变化。因此,为了保持UH不变,可以适当减小激励电流I的值。为此,在霍尔元件的输入回路中并联一个电阻,起到分流的作用。温度误差的补偿电路如图6所示。

高效学习传感器|霍尔式传感器

■ 图6 温度误差的补偿电路

补偿电阻值的计算公式为

高效学习传感器|霍尔式传感器

其中,α是UH的温度系数,β是电阻温度系数,RIN是霍尔元件的输入电阻。对于一种型号的霍尔元件,可以通过技术手册,从其参数表中查出α、β和RIN的值。文章来源地址https://www.toymoban.com/news/detail-454477.html

到了这里,关于高效学习传感器|霍尔式传感器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 毫米波雷达与其他传感器的协同工作:传感器融合的未来

    毫米波雷达与其他传感器的协同工作:传感器融合的未来

    随着科技的不断进步,传感技术在各个领域的应用愈发广泛。毫米波雷达作为一种重要的传感器技术,以其高精度、强穿透力和适应性强等优点,在军事、医疗、汽车、工业等领域都得到了广泛应用。然而,单一传感器的局限性也逐渐显现,为了更全面、精准地获取信息,传

    2024年02月07日
    浏览(8)
  • 智能井盖传感器:高效守护城市道路安全

    智能井盖传感器:高效守护城市道路安全

    近年来,井盖出问题导致事故的报道时有发生,但却容易被公众所忽视。井盖作为城市基础设施的一部分,主要用于保护下方的供水管道、下水道以及电信线缆等。然而,由于长时间使用、缺乏维护、设计不合理等原因,井盖出现问题成为了安全隐患。 井盖出现问题会导致哪

    2024年02月09日
    浏览(8)
  • DS18B20温度传感器工作原理

    DS18B20温度传感器工作原理

    目录 管脚描述 综述 访问DS18B20的事件序列 通信时序 VDD:电源引脚,当采用寄生电源的时候,VDD必须连接到地 DQ:单总线运用的数据输入/输出,当采用寄生电源供电时,同时向设备提供电源 GND:地 ①DS18B20片内的ROM中都存在独一无二的64位编码,在后期通信时,是用此编码进

    2024年02月09日
    浏览(3)
  • 构建安全高效的传感器网络:探索双属性索引与矩阵布隆过滤器

    在当今的信息时代,传感器网络在数据收集和处理中扮演着至关重要的角色。随着技术的进步,管理这些网络中的敏感数据变得尤为重要。本文旨在探索如何在传感器网络中有效地管理敏感数据,同时保障数据的安全和效率。 安全双属性索引是一个先进的技术,旨在高效管理

    2024年02月03日
    浏览(9)
  • 物联网AI MicroPython传感器学习 之 HX711称重传感器

    物联网AI MicroPython传感器学习 之 HX711称重传感器

    学物联网,来万物简单IoT物联网!! 下图是一款量程为5kg的称重传感器,采用悬臂梁方式安装。传感器主体结构是一个开孔金属条,金属条上下表面各贴有两个应变电阻,当金属条受力发生变形时时,应变电阻的阻值也会随之发生变化。电子秤的原理便是根据测量到的电阻变

    2024年02月03日
    浏览(10)
  • 物联网AI MicroPython传感器学习 之 BMP280气压传感器

    物联网AI MicroPython传感器学习 之 BMP280气压传感器

    学物联网,来万物简单IoT物联网!! BMP280是博世出品的气压传感器,它集成了压电压力传感单元、信号处理电路及模数转换器,气压值可以通过SPI或I2C读出,在室内导航、无人机、气象站等场景有广泛应用。 本文档使用I2C通信接口作为本教学文档输出。 引脚定义 VCC: 3.3V GND:

    2024年04月12日
    浏览(12)
  • 物联网AI MicroPython传感器学习 之 MLX90614红外测温传感器

    物联网AI MicroPython传感器学习 之 MLX90614红外测温传感器

    学物联网,来万物简单IoT物联网!! MLX90614是一款由迈来芯公司提供的低成本红外温度计,用于非接触式温度测量,红外测温是根据被测物体的红外辐射能量来确定物体的温度,不与被测物体接触,具有不影响被测物体温度分布场,温度分辨率高、响应速度快、测温范围广、不

    2024年03月20日
    浏览(10)
  • 物联网AI MicroPython传感器学习 之 mpu6050六轴陀螺仪传感器

    物联网AI MicroPython传感器学习 之 mpu6050六轴陀螺仪传感器

    学物联网,来万物简单IoT物联网!! MPU6050是一款6轴运动传感器,它集成了3 轴MEMS 陀螺仪,3 轴MEMS加速度计,以及一个可扩展的数字运动处理器DMP(Digital Motion Processor),可用I2C接口连接一个第三方的数字传感器,比如磁力计。扩展之后就可以通过其I2C 或SPI 接口输出一个

    2024年04月17日
    浏览(11)
  • 物联网AI MicroPython传感器学习 之 ADXL345 3轴加速度传感器

    物联网AI MicroPython传感器学习 之 ADXL345 3轴加速度传感器

    学物联网,来万物简单IoT物联网!! ADXL345是一款完整的3轴加速度测量系统,可选择的测量范围有士2g,士4g,士8g或士16g。它既能测量运动或冲击导致的动态加速度,也能测量静止加速度,例如重力加速度,这样的特性让它可作为倾斜传感器使用。该传感器还具备单击 /双击

    2024年03月26日
    浏览(8)
  • DHT11温湿度传感器学习

    DHT11温湿度传感器学习

     DHT11温湿度传感器共有四个引脚 1个VCC高电平,1个GND接地低电平,1个数据输出引脚,一个空引脚 工作时候,通过out引脚可以向传感器传递应答信号并返回40位的温湿度数据,也就是5个字节 前2个字节表示温度的整数位和小数位,后面两个字节是湿度的整数位和小数位,最后

    2024年02月07日
    浏览(36)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包