LeetCode 周赛 346(2023/05/21)仅 68 人 AK 的最短路问题

这篇具有很好参考价值的文章主要介绍了LeetCode 周赛 346(2023/05/21)仅 68 人 AK 的最短路问题。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。

  • LeetCode 单周赛第 345 场 · 体验一题多解的算法之美

单周赛 345 概览

T1. 删除子串后的字符串最小长度(Easy)

标签:栈

T2. 字典序最小回文串(Medium)

标签:贪心、双指针

T3. 求一个整数的惩罚数(Medium)

标签:回溯、状态压缩、前缀和

T4. 修改图中的边权(Hard)

标签:贪心、最短路


T1. 删除子串后的字符串最小长度(Easy)

https://leetcode.cn/problems/minimum-string-length-after-removing-substrings/

题解(栈)

使用栈模拟扫描过程,当扫描到 DB 时检查栈顶元素,最后栈内剩余的元素个数就是无法消除的最小长度:

class Solution {
    fun minLength(s: String): Int {
        val stack = ArrayDeque<Char>()
        for (c in s) {
            if (c == 'D' && stack.isNotEmpty() && stack.peek() == 'C') stack.pop()
            else if (c == 'B' && stack.isNotEmpty() && stack.peek() == 'A') stack.pop()
            else stack.push(c)
        }
        return stack.size
    }
}

复杂度分析:

  • 时间复杂度:$O(n)$ 其中 n 为 s 字符串的长度;
  • 空间复杂度:$O(n)$ 栈空间。

T2. 字典序最小回文串(Medium)

https://leetcode.cn/problems/lexicographically-smallest-palindrome/

题解(贪心)

贪心思路:当对称位置不相等时,只需要将其中一个位置修改到与另一个位置相同时,得到的操作次数是最少的:

class Solution {
    fun makeSmallestPalindrome(s: String): String {
        val arr = s.toCharArray()
        val n = s.length
        // 判断回文串写法
        for (i in 0 until n / 2) {
            val j = n - 1 - i
            if(arr[i] != arr[j]) {
                val temp = if(arr[i] < arr[j]) arr[i] else arr[j]
                arr[i] = temp
                arr[j] = temp
            }
        }
        return String(arr)
    }
}

复杂度分析:

  • 时间复杂度:$O(n)$ 其中 n 为 s 字符串的长度;
  • 空间复杂度:$O(n)$ 字符数组空间。

T3. 求一个整数的惩罚数(Medium)

https://leetcode.cn/problems/find-the-punishment-number-of-an-integer/

题解一(子集型回溯)

枚举每个数,使用子集型回溯检查是否存在满足条件的切分方案:

class Solution {
    fun punishmentNumber(n: Int): Int {
        if (n <= 3) return 1
        var ret = 0
        for (x in 4 .. n) {
            val target = x * x
            if (backTrack("$target", 0, x)) ret += target
        }
        return ret + 1 /* 1 满足条件 */
    }

    // 子集型回溯
    private fun backTrack(str : String, i : Int, target : Int) : Boolean {
        if (i == str.length) return target == 0
        var cur = 0
        for (to in i until str.length) {
            cur = cur * 10 + (str[to] - '0')
            if (backTrack(str, to + 1, target - cur)) return true
        }
        return false
    }
}

复杂度分析:

  • 时间复杂度:$O(n^2)$ 每个数字 i 转字符串后的长度为 $log_i$,而枚举长度为 $log_i$ 的字符串的切分方案后 $2^{log_i}$ = i 种方案,因此整体的时间复杂度是 $O(n^2)$;
  • 空间复杂度:$O(lgn)$ 递归栈空间。

题解二(状态压缩)

由于数字的长度小于 32,我们可以用 int 表示所有切分方案,再检查是否存在满足条件的切分方案:

class Solution {
    fun punishmentNumber(n: Int): Int {
        if (n <= 3) return 1
        var ret = 0
        for (x in 4 .. n) {
            val target = x * x
            if (check("$target", x)) ret += target
        }
        return ret + 1 /* 1 满足条件 */
    }

    // 状态压缩
    private fun check(str : String, target : Int) : Boolean {
        val m = str.length
        val upper = (1 shl m) - 1
        for (k in 1 .. upper) {
            var last = 0
            var sum = 0
            for (i in 0 until m) {
                val cur = str[i] - '0'
                if (k and (1 shl i) != 0) {
                    // 拆
                    sum += last
                    last = cur
                } else{
                    // 不拆
                    last = last * 10 + cur
                }
            }
            if (sum + last == target) return true
        }
        return false
    }
}

复杂度分析:

  • 时间复杂度:同上;
  • 空间复杂度:$O(1)$ 仅使用常量级别空间。

题解三(预处理 + 前缀和)

题解一和题解二在多个测试用例间会重复计算相同数字的切分方案,我们可以预处理 1 - 1000 中所有满足条件的数平方,并维护前缀和数组:

class Solution {

    companion object {
        private val U = 1000
        private val preSum = IntArray(U + 1)
        init {
            for (x in 4 .. U) {
                val target = x * x
                if (check("$target", x)) preSum[x] += target
                preSum[x] += preSum[x - 1]
            }
        }

        // 状态压缩
        private fun check(str : String, target : Int) : Boolean {
        }
    }

    fun punishmentNumber(n: Int): Int {
        return preSum[n] + 1
    }
}

复杂度分析:

  • 时间复杂度:$O(U^2)$ 其中 U 是数据大小上界;
  • 空间复杂度:$O(U)$ 前缀和数组空间。

T4. 修改图中的边权(Hard)

https://leetcode.cn/problems/modify-graph-edge-weights/submissions/434224996/

LeetCode 少有的难题,排进历史 Top 10 没问题吧?

问题无解的情况:

  • 1、假设将所有负权边设置为 INF(2*10^9)时的最短路长度 dis < target(不论是否经过负权边),由于无法继续增大边权来增大最短路长度,因此问题无解;
  • 2、假设将所有负权边设置为 1 时的最短路长度 dis > target(不论是否经过负权边),由于继续增大边权最短路不可能变小,因此问题无解。

错误的思路:

先把所有负权边设置为 1,再跑 Dijkstra 最短路,如果最短路长度 dis < target,那么将其中一条负权边继续增大 “target - dis”,就能是该路径的长度恰好为 target。然而,由于增加权重后最短路长度有可能变化,所以这个思路不能保证正确性。

正确的思路:

  • 1、先把所有负权边改为 1 跑 Dijkstra 最短路,计算出起点到终点的最短路长度。同时,如果该长度 dis > target,则问题无解;如果该长度 dis == target,则直接返回;如果该长度 dis < target,则需要补全。
  • 2、问题的关键在于,按什么顺序修改,以及修改到什么值。
    • 顺序:利用 Dijkstra 最短路算法每次使用「确定集」中最短路长度最短的节点去松弛其他点的时机,由于修改该点不会影响已确定路径,因此这是一个不错的时机;
    • 修改到什么值:需要满足 dis[0][x] + w + dis[y][e] = target,那么有 w = target - dis[0][x] - (dis[0][e] - dis[0][y]) = delta - dis[0][x] + dis[0][y]
  • 3、虽然修改后最短路不一定经过 w,但由于不断的使用最短路长度最短的节点,因此最终总能修改成功,除非修改后最短路依然小于 target(例如存在直接从 s 到 e 的边)
  • 4、最后,将未修改的边增加到 INF。
class Solution {

    private val INF = 1e9.toInt()

    fun modifiedGraphEdges(n: Int, edges: Array<IntArray>, source: Int, destination: Int, target: Int): Array<IntArray> {
        if (source !in 0 .. n - 1 || destination !in 0 .. n - 1) return edges
        if (source == destination || edges.isNullOrEmpty()) return edges
        // 建图(领接表,节点号 + 边号方便修改边权)
        val graph = Array(n) { ArrayList<IntArray>() }
        for ((i, edge) in edges.withIndex()) {
            graph[edge[0]].add(intArrayOf(edge[1], i))
            graph[edge[1]].add(intArrayOf(edge[0], i))
        }
        // 第一轮最短路
        val originDis = dijkstra1(graph, edges, source, destination)
        if (originDis[destination] > target) return emptyArray() // 无解
        // 第二轮最短路
        val delta = target - originDis[destination] // 需要补全的最短路
        val dis = dijkstra2(graph, edges, source, destination, delta, originDis)
        if (dis[destination] < target) return emptyArray() // 无解
        // 修改剩余边
        for (edge in edges) {
            if (edge[2] == -1) edge[2] = INF
        }
        return edges
    }

    // return:将 -1 视为 1,并计算从起点到终点的最短路
    private fun dijkstra1(graph:Array<ArrayList<IntArray>>, edges: Array<IntArray>, source :Int, destination:Int) : IntArray {
        val n = graph.size
        val visit = BooleanArray(n)
        val dis = IntArray(n) { INF }
        dis[source] = 0
        while (true) {
            // 寻找最短路长度最短的节点
            var x = -1
            for (i in 0 until n) {
                if (visit[i]) continue
                if (-1 == x || dis[i] < dis[x]) x = i
            }
            if (x == destination) break
            visit[x] = true // 标记
            // 松弛相邻边
            for (to in graph[x]) {
                var w = edges[to[1]][2]
                if (-1 == w) w = 1 // 视为 1
                if (dis[x] + w < dis[to[0]]) dis[to[0]] = dis[x] + w
            }
        }
        return dis
    }

    // 补全
    private fun dijkstra2(graph:Array<ArrayList<IntArray>>, edges: Array<IntArray>, source :Int, destination:Int, delta: Int, originDis:IntArray /* 首轮计算的最短路 */) : IntArray {
        val n = graph.size
        val visit = BooleanArray(n)
        val dis = IntArray(n) { INF }
        dis[source] = 0
        while (true) {
            // 寻找最短路长度最短的节点
            var x = -1
            for (i in 0 until n) {
                if (visit[i]) continue
                if (-1 == x || dis[i] < dis[x]) x = i
            }
            if (x == destination) break
            visit[x] = true // 标记
            // 松弛相邻边
            for (to in graph[x]) {
                var w = edges[to[1]][2]
                if (-1 == w) {
                    // 补全(两次 Dijkstra 只修改这里)
                    w = Math.max(delta - dis[x] + originDis[to[0]], 1) // 题目要求至少修改到 1
                    if (w >= 1) edges[to[1]][2] = w
                }
                if (dis[x] + w < dis[to[0]]) dis[to[0]] = dis[x] + w
            }
        }
        return dis
    }
}

复杂度分析:文章来源地址https://www.toymoban.com/news/detail-454595.html

  • 时间复杂度:$O(n^2)$ 两轮最短路算法;
  • 空间复杂度:$O(m)$ 图空间。

往期回顾

  • LeetCode 单周赛第 345 场 · 体验一题多解的算法之美
  • LeetCode 单周赛第 344 场 · 手写递归函数的通用套路
  • LeetCode 双周赛第 104 场 · 流水的动态规划,铁打的结构化思考
  • LeetCode 双周赛第 103 场 · 区间求和的树状数组经典应用

到了这里,关于LeetCode 周赛 346(2023/05/21)仅 68 人 AK 的最短路问题的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LeetCode 双周赛 104(2023/05/13)流水的动态规划,铁打的结构化思考

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 往期回顾:LeetCode 单周赛第 344 场 · 手写递归函数的通用套路 T1. 老人的数目(Easy) 标签:模拟、计数 T2. 矩阵中的和(Medium) 标签:模拟、排序 T3. 最大或值(Medium) 标签:动态规划、前后缀分解

    2024年02月04日
    浏览(58)
  • 2023-05-21 LeetCode每日一题(蓄水)

    LCP 33. 蓄水 点击跳转到题目位置 给定 N 个无限容量且初始均空的水缸,每个水缸配有一个水桶用来打水,第 i 个水缸配备的水桶容量记作 bucket[i]。小扣有以下两种操作: 升级水桶:选择任意一个水桶,使其容量增加为 bucket[i]+1 蓄水:将全部水桶接满水,倒入各自对应的水缸

    2024年02月05日
    浏览(43)
  • LeetCode 周赛 343(2023/04/30)结合「下一个排列」的贪心构造问题

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 大家好,我是小彭。 今天是五一假期的第二天,打周赛的人数比前一天的双周赛多了,难道大家都只玩一天吗?这场周赛是 LeetCode 第 343 场单周赛,如果不考虑第一题摆烂的翻译,整体题目质量还是

    2024年02月02日
    浏览(41)
  • 每天一道leetcode:1129. 颜色交替的最短路径(图论&中等&广度优先遍历)

    给定一个整数 n ,即有向图中的节点数,其中节点标记为 0 到 n - 1 。图中的每条边为红色或者蓝色,并且可能存在自环或平行边。 给定两个数组 redEdges 和 blueEdges ,其中: redEdges[i] = [ai, bi] 表示图中存在一条从节点 ai 到节点 bi 的红色有向边, blueEdges[j] = [uj, vj] 表示图中存

    2024年02月13日
    浏览(41)
  • LeetCode 周赛 340,质数 / 前缀和 / 极大化最小值 / 最短路 / 平衡二叉树

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 大家好,我是小彭。 上周跟大家讲到小彭文章风格的问题,和一些朋友聊过以后,至少在算法题解方面确定了小彭的风格。虽然竞赛算法题的文章受众非常小,但却有很多像我一样的初学者,他们有

    2023年04月14日
    浏览(35)
  • java数据结构与算法刷题-----LeetCode1091. 二进制矩阵中的最短路径

    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完): https://blog.csdn.net/grd_java/article/details/123063846 双分裂蛇:是求二维表中从起点到终点的经典思路(也是求无权图的最短路径问题的经典解法)。创建两条分裂蛇,分别从起点和

    2024年04月26日
    浏览(52)
  • Java高阶数据结构 & 图的最短路径问题

    图的最短路径问题! 图的基础知识博客:传送门 最短路径问题: 从在带权图的某一顶点出发,找出一条通往另一顶点的最短路径, 最短也就是沿路径各边的权值总 和达到最小 。 一共会讲解三种算法 Dijkstra算法【单源最短路径】 Bellman-Ford算法【单源最短路径】 改进:SPF

    2024年02月04日
    浏览(53)
  • 【Java高阶数据结构】图的最短路径问题

    图的最短路径问题! 图的基础知识博客:传送门 最短路径问题: 从在带权图的某一顶点出发,找出一条通往另一顶点的最短路径, 最短也就是沿路径各边的权值总 和达到最小 。 一共会讲解三种算法 Dijkstra算法【单源最短路径】 Bellman-Ford算法【单源最短路径】 改进:SPF

    2024年02月08日
    浏览(38)
  • C语言数据结构——图的最短路径算法解决实例问题

    一、问题描述 W公司在某个地区有6个产品销售点,现根据业务需要打算在其中某个销售点上建立一个中心仓库,负责向其他销售点提供产品。由于运输线路不同,运输费用也不同。假定每天需要向每个销售点运输一次产品,那么应将中心仓库建在哪个销售点上,才能使运输费

    2024年02月08日
    浏览(48)
  • 算法课程设计--A*算法解决特定条件下的最短路径问题

             LOL 峡谷地图最优路径规划        以下问题的计算,按照该地图的基本规则来进行在该地图中分布着各种形状不规则的障碍区域环境。整个地图模型,可以根据需求进行自行简化。 问题一:在任意起点与终点之间,规划一条最短路径。 问题二:当你拥有一个闪现

    2024年02月10日
    浏览(60)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包