什么是卷积

这篇具有很好参考价值的文章主要介绍了什么是卷积。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

卷积是什么鬼

卷积(convolution)
卷积: f ( t ) ∗ g ( t ) = ∫ f ( τ ) g ( τ ) d ( τ ) 卷积运算符号用 ∗ 号来表示 卷积:f(t)*g(t)=\int{f(τ)g(τ)d(τ)}\\ 卷积运算符号用*号来表示 卷积:f(t)g(t)=f(τ)g(τ)d(τ)卷积运算符号用号来表示
 卷积本质上还是运算,不过要比常见的加减乘除要高级的多,如果要用一句人话来讲:它用极简的数学形式,漂亮的描述了一个动态过程。

 这个过程用个一个故事来表达:假设有一列火车g(t)和一个山洞f(t)摆在摆在同一个数轴上,这时火车头和山洞入口都在最左侧,如果现在我们想要描述火车进山的过程,该怎么办。

什么是卷积

这是应该把火车旋转一下,让车头冲着山洞口,然后再一点点驶入山洞,这个过程才是卷积要解决的问题。

什么是卷积

 用数学语言来描述,把火车旋转就是把g(τ)变成g(-τ),这里我们用临时变量τ代替了原有的变量t,如此车身就被甩到了y轴左侧。
 然后配上全局变量t,得到g(t-τ),火车就可以运动起来了,乘积f(τ)乘以g(t-τ),表示火车进入山洞后每一时刻t两者相对的位置。
 积分也就是累加和,即记录了火车进入山洞后两者不断重叠、互相作用的过程。

什么是卷积

 现在把火车和山洞都简化为函数曲线,比如用红色的方波表示几何,黑色的曲线表示山洞\两个函数图像重叠的黄色区域面积,就是传说中的f(t)*g(t),有时也写成(f*g)(t)

什么是卷积

 两个函数f和g可以是各种弯弯曲曲的形式,但它们的卷积表示的都是一个函数转进另一个函数肚子里的动态过程

什么是卷积

 因为要从头部开始进去,所以要先进行函数旋转,这两个函数的角色其实是可以函数互换的,也就是说可以是火车进山洞,也可以是山洞套火车,这就是所谓的卷积交换性质

 卷积函数不仅可以连续的曲线,也可以是离散的形式如果用连续曲线选取采样点的视角来看两者本质上是一样的
f [ n ] ∗ g [ m ] = ∑ m = − ∞ ∞ f ( m ) g ( n − m ) f[n]*g[m]=\sum^{\infty}_{m=-\infty}f(m)g(n-m) f[n]g[m]=m=f(m)g(nm)
什么是卷积

卷积为什么这么牛

微积分: y = ∫ ( x − u ) n P ( x ) d x 微积分:y=\int{(x-u)^nP(x)dx} 微积分:y=(xu)nP(x)dx

 卷积的江湖地位不是一天形成的,数学天才欧拉早在18世纪研究微积分的时候就发现了这样一种能够将多种运算集于一身的有趣形式,但之后相当长的一段时间对它的关注还仅仅局限于数学界。
卷积定理: F [ f 1 ( t ) ∗ f 2 t ] = f 1 ( w ) ⋅ f 2 ( w ) 时域转频域 卷积定理:F[f_1(t)*f_2{t}]=f_1(w)\cdot f_2(w)\\时域转频域 卷积定理:F[f1(t)f2t]=f1(w)f2(w)时域转频域
 1821年,大神傅里叶正式提出卷积概念,并成功应用到物理领域,借助积分变换解决了信号处理中的时域与频域转换的难题,函数卷积的傅里叶变换等于函数傅里叶变换的乘积,这就是著名的卷积定理,在信号领域有着举足轻重的地位,可以说没有卷积就没有现在的5G、互联网。
y ( t ) = f ( t ) ∗ g ( t ) = ∫ f ( τ ) g ( t − τ ) d τ y(t)=f(t)*g(t)=\int{f(τ)g(t-τ)dτ} y(t)=f(t)g(t)=f(τ)g(tτ)dτ
 20世纪开始,卷积运算被越来越多的科学家为之着迷,其最牛掰之处就在于:简介的数学模型却能高度概括生活中的很多现象,因而成为工程科学领域冉冉升起的耀眼明星

通信领域
人们把卷积看成是将一种信号搬移到另外的一种频率当中,实现了调制功能

什么是卷积

物理领域
卷积可以代表系统对某个输入物理量进行影响或者是污染

什么是卷积

电路学
卷积是某种系统冲击函数对输入的相应,这类系统就是传说中的线行时不变系统

什么是卷积

信号处理
从信号的角度来看,卷积实际上就是对信号进行滤波,系统就是滤波器,过滤出我们感兴趣有价值的信息。

什么是卷积

图像处理
在图像处理领域卷积就像是一把好用的搓刀,被广泛应用于平滑、锐化、展宽等各种操作。

什么是卷积

不仅如此,自动控制、地震学和医学等许多新兴领域都能看到卷积婀娜的身姿。

如果卷积的牛掰之处到此也就罢了,谁知更恐怖的事情发生了。
 1998年,法国学者Yann LeCun将卷积运算与神经网络结合,提出了著名的卷积神经网络(Convolutional Neural Network)——CNN模型。
 伴随着21世纪海量互联网大数据和GPU等硬件设备的快速发展,深度卷积神经网络自2012年一炮而红,引领了十年间人工智能技术的再度崛起,在众多领域显示了超越人类的强大能力。

卷积神经网络是个啥

 卷积神经网络最早应用在计算机视觉里,我们现在耳熟能详的人脸识别、字符识别背后算法的核心都是CNN技术。

 卷积神经网络在把图片交给神经网络之前先要对图像进行一轮卷积的操作。

 我们知道,视频其实是一组图片以极快的速度交替呈现而出的,其中的每张图片叫做一帧,卷积神经网络就是应用在这样的一帧图像上的。

 计算机是如何处理图片的呢,我们看到的图片实际上是由RGB或者其它颜色模型下多种颜色图像叠加而成的,每种颜色由浅到深有分了0-255一共256个等级,如此一来,我们就可以把图片转化为数字矩阵

什么是卷积

 接下来为了提取图像的特征,我们会构建一个正方形的点阵,这个点阵就叫做卷积核,具体的操作过程是重合格子里的数字相乘然后再相加输出新的结果,从左上到右下逐个像素地遍历整个图像,就能得到新的矩阵了,这个过程用数学式子表达就是一个二维离散卷积操作。
y [ n 1 , n 2 ] = x [ n 1 , n 2 ] ∗ h [ n 1 , n 2 ] = ∑ m − ∞ ∞ ∑ m − ∞ ∞ x [ m 1 , m 2 ] ⋅ h [ n 1 − m 1 , n 2 − m 2 ] y[n_1,n_2]=x[n_1,n_2]*h[n_1,n_2]=\sum^{\infty}_{m-\infty}\sum^{\infty}_{m-\infty}x[m_1,m_2]\cdot h[n_1-m_1,n_2-m_2] y[n1,n2]=x[n1,n2]h[n1,n2]=mmx[m1,m2]h[n1m1,n2m2]
什么是卷积

 你可能会问原始图像遍历下来,原始图像边缘的像素点不就遍历不到了,这样每次生成新的矩阵就会比原始图像小一圈,为了解决这个问题,在卷积操作之前,一般会给原始图像外面补上一圈0,来保证输入输出维度一致,这个操作就是全零填充

什么是卷积

 前面讲卷积操作就是用一个输入乘上系统函数然后计算输出在图像处理中,输入就是原始图像的像素,系统函数就是卷积核,将这也是卷积神经网络得名的由来。
∑ ( 输入信号 f × 系统函数 g ) \sum{(输入信号f×系统函数g)} (输入信号f×系统函数g)
什么是卷积

 卷积的意义何在呢,直接来看不同类型的卷积核过滤之后的图像就好了。通过卷积操作能够提取出图像的特征,从而为之后的神经网络计算创造更好的条件,这里的卷积核也常常被叫做过滤器

什么是卷积

 伴随着人工智能技术的飞速发展,卷积现在已经几乎渗透进我们知道的每一个技术领域,发挥着越来越重要的作用。文章来源地址https://www.toymoban.com/news/detail-454933.html

到了这里,关于什么是卷积的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • TCN(Temporal Convolutional Network,时间卷积网络)

            实验表明,RNN 在几乎所有的序列问题上都有良好表现,包括语音/文本识别、机器翻译、手写体识别、序列数据分析(预测)等。         在实际应用中,RNN 在内部设计上存在一个严重的问题: 由于网络一次只能处理一个时间步长,后一步必须等前一步处理完才能

    2024年02月01日
    浏览(40)
  • 【论文笔记】动态蛇卷积(Dynamic Snake Convolution)

    精确分割拓扑管状结构例如血管和道路,对医疗各个领域至关重要,可确保下游任务的准确性和效率。然而许多因素使分割任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。针对这个问题,作者提出了动态蛇卷积,该结构在管状分割任务上获得了极好的性能。

    2024年02月03日
    浏览(40)
  • 【论文笔记合集】卷积神经网络之深度可分离卷积(Depthwise Separable Convolution)

    本文作者: slience_me 我看的论文地址:MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 假设输入为D F ×D F ×M,输出为输入为D F ×D F ×N,卷积核为D K ×D K ×M,共有N个卷积核进行卷积操作 下图为标准的卷积过程,每个卷积核对输入的向量进行卷积操作,得到一个

    2024年01月16日
    浏览(48)
  • 卷积神经网络CNN(Convolutional Neural Network)

    一、CNN与NN的区别 卷积神经网络与传统神经网络的区别: 二、CNN的整体架构 1.输入层;2.卷积层;3.池化层;4.全连接层 三、卷积层做了什么 首先将图形分割成一个个小区域,对于每一个区域特征不同;接下来选择一种特征计算的方法,为每一个区域计算特征值,得到特征图

    2024年02月04日
    浏览(74)
  • AIGC实战——卷积神经网络(Convolutional Neural Network, CNN)

    在深度学习一节中,我们使用 Keras

    2024年02月04日
    浏览(55)
  • CBAM(Convolutional Block Attention Module)卷积注意力模块用法及代码实现

    CBAM( Convolutional Block Attention Module )是一种轻量级注意力模块的提出于2018年。CBAM包含CAM(Channel Attention Module)和SAM(Spartial Attention Module)两个子模块,分别在通道上和空间上添加注意力机制。这样不仅可以节约参数和计算力,而且保证了其能够做为即插即用的模块集成到现

    2024年02月11日
    浏览(36)
  • 深度学习入门——深度卷积神经网络模型(Deep Convolution Neural Network,DCNN)概述

    机器学习是实现人工智能的方法和手段,其专门研究计算机如何模拟或实现人类的学习行为,以获取新的知识和技能,重新组织已有的知识结构使之不断改善自身性能的方法。计算机视觉技术作为人工智能的一个研究方向,其随着机器学习的发展而进步,尤其近10年来,以深

    2024年02月13日
    浏览(45)
  • 改进YOLO系列 | YOLOv5/v7 引入 Dynamic Snake Convolution | 动态蛇形卷积

    准确分割拓扑管状结构,如血管和道路,在各个领域中至关重要,可以确保下游任务的准确性和效率。然而,许多因素使任务复杂化,包括细小的局部结构和可变的全局形态。在这项工作中,我们注意到管状结构的特殊性,并利用这一知识来引导我们的DSCNet,以在三个阶段同

    2024年02月07日
    浏览(42)
  • 「SymPy」符号运算(6) 矩阵Matrix及基础运算

    在前几篇文章中,我们学习了 SymPy 基础/高级用法、方程求解、微积分以及向量运算等内容,本节我们学习 SymPy 核心内容之一 Matrix 矩阵计算(基础)。 传送链接: 「SymPy」符号运算(1) 简介/符号/变量/函数/表达式/等式/不等式/运算符 「SymPy」符号运算(2) 各种形式输出、表达

    2024年02月14日
    浏览(33)
  • 论文阅读:RFAConv: Innovating Spatial Attention andStandard Convolutional Operatio|RFAConv:创新空间注意力和标准卷积操作

      摘要 一、简介 3研究方法 3.1标准卷积操作回顾 3.2空间注意力回顾 3.3 空间注意与标准卷积运算 3.4创新空间注意力和标准卷积操作 入数据 总结 空间注意力被广泛用于提高卷积神经网络的性能。但是,它也有一定的局 限性。 本文提出了空间注意有效性的新视角,即空间注意

    2024年02月04日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包