【算法】单源最短路径算法——Dijkstra算法

这篇具有很好参考价值的文章主要介绍了【算法】单源最短路径算法——Dijkstra算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、简介与使用场景

迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。这是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。

Dijkstra算法的使用场景:
一定要是单源最短路径且每条边的权重必须是正值

单源最短路径:希望找到从(一个)源节点到每个结点的最短路径;

二、算法思想

Dijkstra算法主要是基于贪心的策略,始终保持当前迭代解为当前最优解。意思就是在已知的条件下或是当前拥有的全部条件下保证最优解,若在此后的迭代中由于加入了新的条件使得产生了更优解则替代此前的最优解。通过不断的迭代不断保证每次迭代的结果都是当前最优解,当迭代到最后一轮时得到的就会是全局最优解。

步骤:
比如说现在要求1到n节点的最短距离。
我们可以用一个bool数组st记录每个边是否已经被确定为最短路。
再用一个dist数组记录每个节点到源点的距离。
1️⃣ 先把第一个节点的距离记为0(dist[1] = 0),其他的节点距离记为正无穷。
2️⃣ 循环n - 1次,每一次循环内部再遍历所有节点,找到(不在st数组内的)最小权值的节点。再把这个节点加入到st中。
3️⃣ 用找到的这个节点更新其他(与他相连)节点的dist

第一次找到x节点的时候一定从源点到x节点的最短路径。

举个例子:
【算法】单源最短路径算法——Dijkstra算法
先把①的dist变成0,其他的dist为正无穷。
【算法】单源最短路径算法——Dijkstra算法
循环两次,第一次找到了①节点。然后利用①更新没有确定已经是最短路径的节点,也就是2和3。而此时①就已经确定了他自己的最短路径,标记st为true。

【算法】单源最短路径算法——Dijkstra算法
第二次循环找到了②节点,那么利用②来处理还没有确定的节点,只剩下③。

【算法】单源最短路径算法——Dijkstra算法
由此单源最短路径就已经找到。

三、朴素版Dijkstra

用一道例题来讲解:
题目链接

题目描述:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式

第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。

数据范围

1≤n≤500,1≤m≤105,
图中涉及边长均不超过10000。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

思路分析:
因为这道题的给的是稠密图,所以用邻接矩阵来存储。
而存在重边所以初始化邻接矩阵的时候每次要判断是不是最小,取最小值即可。
而如果存在自环,只需要最后判断n节点有没有被处理即可。

#include <iostream>
#include <cstring>

using namespace std;

const int N = 510;

int n, m;

int g[N][N];// 邻接矩阵
int dist[N];// 距离
bool st[N];// 是否已经确定了最短路径

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;// 初始化第一个节点
    for(int i = 0; i < n - 1; i++)// 循环n - 1次
    {
        int t = -1;// 找最小节点
        for(int j = 1; j <= n; j++)
        {
            if(!st[j] && (t == -1 || dist[j] < dist[t]))
            {
                t = j;
            }
        }
        if(t == n) break;// 找了n节点是最小说明n已经确定为最短路径了
        st[t] = true;
        // 更新其他节点
        for(int j = 1; j <= n; j++)
        {
            dist[j] = min(dist[j], dist[t] + g[t][j]);
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    memset(g, 0x3f, sizeof g);
    cin >> n >> m;
    int a, b, c;
    while(m--)
    {
        cin >> a >> b >> c;
        g[a][b] = min(g[a][b], c);
    }
    cout << dijkstra() << endl;
    return 0;
}

四、堆优化版Dijkstra

而如果题目给的是一个稀疏图,我们还用上面的算法(时间复杂度为O(N^2)),可能会超时。
所以有了一个优化版本的Dijkstra算法。
通过分析朴素版本的代码,可以看到每次都要暴力遍历所有的边找到最小的距离,所以我们可以使用堆,每次堆顶都是最小的边。

来看一道例题:
题目链接

题目描述:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环,所有边权均为非负值。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 −1。

输入格式

第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式

输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 −1。

数据范围

1≤n,m≤1.5×105,图中涉及边长均不小于 0,且不超过 10000。
数据保证:如果最短路存在,则最短路的长度不超过 109。

输入样例:

3 3
1 2 2
2 3 1
1 3 4

输出样例:

3

思路描述:
大致思路跟朴素版一样,而我们怎么用优先级队列来得到最小距离的节点呢?
我们可以用pair<int, int>来存储,first代表距离,second代表节点。
这里用数组模拟邻接表在上一章有讲解:
【数据结构与算法】图——邻接表与邻接矩阵

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 150010;

int n, m;

int h[N], e[N], ne[N], w[N], idx;
bool st[N];
int dist[N];

void add(int a, int b, int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx++;
}

int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    priority_queue<PII, vector<PII>, greater<PII>> pq;
    pq.push({0, 1});
    dist[1] = 0;
    while(pq.size())
    {
        auto t = pq.top();
        pq.pop();
        int node = t.second, val = t.first;
        if(st[node]) continue;
        st[node] = true;
        // 更新其他节点
        for(int i = h[node]; i != -1; i = ne[i])
        {
            int j = e[i];
            dist[j] = min(dist[j], w[i] + dist[node]);
            pq.push({dist[j], j});
        }
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

int main()
{
    memset(h, -1, sizeof h);
    cin >> n >> m;
    int a, b, c;
    while(m--)
    {
        cin >> a >> b >> c;
        add(a, b, c);
    }
    cout << dijkstra() << endl;
    return 0;
}

五、总结

Dijkstra算法用来解决的是单源最短路径且没有负权值的问题。
并不是所有的题目都用优化版本的,而是稠密图用朴素版Dijkstra,稀疏图用堆优化版Dijkstra。文章来源地址https://www.toymoban.com/news/detail-455000.html

到了这里,关于【算法】单源最短路径算法——Dijkstra算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++ | 数据结构与算法 | 单源最短路径 | Dijkstra && Bellman Ford

    (关于代码实现的图结构,可以看图结构的实现这篇文章) Dijkstra的实现与Prim的实现相似,两者都是通过贪心思想实现,它们有什么不同呢?首先Prim算法是针对无向图的最小生成树的,而Dijkstra算法是针对 有向图 的最短路径生成。一个的目的是连接图中的所有顶点,生成一

    2024年02月03日
    浏览(49)
  • 【数据结构】最小生成树(Prim算法,普里姆算法,普利姆)、最短路径(Dijkstra算法,迪杰斯特拉算法,单源最短路径)

    问题解答 (1)最小生成树(Minimal Spanning Tree)的定义 生成树的代价 :设 G ( V , E ) G(V,E) G ( V , E ) 是一个无向连通网图,生成树上 各边的权值之和 称为 生成树的代价 。 最小生成树 :在图 G G G 所有生成树中, 代价最小的生成树 为 最小生成树 。 (2)最小生成树(MST)的性

    2024年02月11日
    浏览(38)
  • 单源最短路径(spfa,Dijkstra, bellman-ford)

    目录  Dijkstra 原理:基于贪心。 为什么 Dijkstra 不能处理有负边的情况 Bellman-ford 原理:动态规划, 实质见floyd的另一篇博客 1,能找负环, 2,有变数限制的最短路径 spfa 原理 spfa怎么求负环, 原理:基于贪心。 第一步 初始化距离,dist[1] = 0, 一号点到起点的距离为0, 其他点

    2024年02月04日
    浏览(50)
  • 算法提高-图论-单源最短路的综合应用

    多次dijkstra求每个点到其它点的最短距离, 此时相当于建好了一张图,每个点之间的最短距离都知道了,接下来dfs搜一下怎么走最短即可 一篇博客解释了为什么一个正向建图求最小值,反向建图求最大值 根本思想是保证1到n的买卖是连通的

    2024年02月11日
    浏览(75)
  • 算法提高-图论-单源最短路的扩展应用

    多源点单终点最短路建图: 创建虚拟源点(创建虚拟源点的时候以是spfa为例 可以在建图的时候建出来,也可以在spfa这直接入队,也是虚拟源点的意思) 反向建图变成单源点多终点,然后遍历终点的dist即可找出最短路 这题挺简单的就不详细说了,主要是第一次遇到计数问题

    2024年02月16日
    浏览(47)
  • 迪杰斯特拉算法 – 图的单源最短路径

    迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。迪杰斯特拉算法采

    2024年02月05日
    浏览(42)
  • 算法提高-图论-单源最短路的建图方式

    建图 找出一个牧场,它到其他牧场的距离之和最小 我是这么理解的,djsktra是一个贪心的思想,加法里面不能加负数我就不说了 求乘法最大值的时候为什么边权必须0-1,因为在乘法最大值里面有一个边权大于1的话那不就等价于求加法最小值的时候有一个边权为负数的么,d

    2024年02月08日
    浏览(45)
  • 【算法入门&搜索法】走迷宫|单源最短路径1

    ✅作者简介:热爱后端语言的大学生,CSDN内容合伙人 ✨精品专栏:C++面向对象 🔥系列专栏:算法百炼成神 本专栏收录的均为牛客网的算法题目,内含链表、双指针、递归、动态规划、基本数据结构等算法思想的具体运用。牛客网不仅有大量的经典算法题目,也有大厂的面

    2024年02月03日
    浏览(65)
  • 贝尔曼福特算法——负权值单源最短路径

    title: 贝尔曼福特算法——负权值单源最短路径 date: 2023-05-16 11:42:26 tags: 数据结构与算法 **问题:**具有负权值非环图的单源最短路径算法 git地址:https://github.com/944613709/HIT-Data-Structures-and-Algorithms 对图中的边进行V-1轮遍历,对所有的边松弛(对每条边v1-v2,如果d[v2]+Weight(v1-v2)

    2024年02月14日
    浏览(38)
  • 广度优先搜索(BFS)算法求解单源最短路径问题

      单源最短路径问题是图论中一类重要且常见的应用问题。在这个问题中,我们需要找到从一个给定源节点到其他节点的最短路径。广度优先搜索(BFS)算法是一种常用且有效的求解这一问题的算法。   本篇博客将重点讨论单源最短路径问题及其实际应用,同时简要介绍

    2024年02月13日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包