【零基础学机器学习 3】机器学习类型简介:监督学习 - 无监督学习 - 强化学习

这篇具有很好参考价值的文章主要介绍了【零基础学机器学习 3】机器学习类型简介:监督学习 - 无监督学习 - 强化学习。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

👨‍💻 作者简介:程序员半夏 , 一名全栈程序员,擅长使用各种编程语言和框架,如JavaScript、React、Node.js、Java、Python、Django、MySQL等.专注于大前端与后端的硬核干货分享,同时是一个随缘更新的UP主. 你可以在各个平台找到我!
🏆 本文收录于专栏: 零基础学机器学习
🔥 专栏介绍:

🥇 本专栏将帮助您了解机器学习、其工作原理以及如何使用它。本教程包含以下内容:监督和无监督学习、线性回归、随机森林算法、朴素贝叶斯分类器、K-means聚类算法等基础学习基础知识,以及各种实战案例。

【零基础学机器学习 3】机器学习类型简介:监督学习 - 无监督学习 - 强化学习
文章来源地址https://www.toymoban.com/news/detail-455033.html

到了这里,关于【零基础学机器学习 3】机器学习类型简介:监督学习 - 无监督学习 - 强化学习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 为什么ChatGPT用强化学习而非监督学习?

    为什么ChatGPT非得用强化学习,而不直接用监督学习?原因不是那么显而易见。在上周发布的 《John Schulman:通往TruthGPT之路》 一文中,OpenAI联合创始人、ChatGPT主要负责人John Schulman分享了OpenAI在人类反馈的强化学习(RLHF)方面的进展,分析了监督学习和强化学习各自存在的挑

    2024年02月05日
    浏览(40)
  • 人工智能基础_机器学习006_有监督机器学习_正规方程的公式推导_最小二乘法_凸函数的判定---人工智能工作笔记0046

    我们来看一下公式的推导这部分比较难一些, 首先要记住公式,这个公式,不用自己理解,知道怎么用就行, 比如这个(mA)T 这个转置的关系要知道 然后我们看这个符号就是求X的导数,X导数的转置除以X的导数,就得到单位矩阵, 可以看到下面也是,各种X的导数,然后计算,得到对应的矩阵

    2024年02月08日
    浏览(54)
  • 人工智能基础_机器学习001_线性回归_多元线性回归_最优解_基本概念_有监督机器学习_jupyter notebook---人工智能工作笔记0040

       线性和回归,就是自然规律,比如人类是身高趋于某个值的概率最大,回归就是通过数学方法找到事物的规律. 机器学习作用: 该专业实际应用于机器视觉、指纹识别、人脸识别、视网膜识别、虹膜识别、掌纹识别、专家系统、自动规划、智能搜索、定理证明、博弈、自动程序

    2024年02月06日
    浏览(53)
  • 人工智能基础_机器学习003_有监督机器学习_sklearn中线性方程和正规方程的计算_使用sklearn解算八元一次方程---人工智能工作笔记0042

    然后我们再来看看,如何使用sklearn,来进行正规方程的运算,当然这里 首先要安装sklearn,这里如何安装sklearn就不说了,自己查一下 首先我们还是来计算前面的八元一次方程的解,但是这次我们不用np.linalg.solve这个 解线性方程的方式,也不用 直接 解正规方程的方式: 也就是上面这种

    2024年02月08日
    浏览(52)
  • 机器学习基础算法--回归类型和评价分析

    目录 1.数据归一化处理 2.数据标准化处理 3.Lasso回归模型 4.岭回归模型 5.评价指标计算       MSE= i=1 n ( Y i - Y ^ ) 2 n RMES= i=1 n ( Y i - Y ^ ) 2 n MAE= i=1 n | Y i - Y ^ | n R 2 =1- i=1 n ( Y ^ - Y i ) 2 i=1 n ( Y ¯ - Y i )2

    2024年02月09日
    浏览(38)
  • 机器学习、监督学习、无监督学习基本概念

    - 机器学习 机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 机器学习有下面几种定义: (

    2024年02月12日
    浏览(61)
  • 机器学习---监督学习和非监督学习

    根据训练期间接受的监督数量和监督类型,可以将机器学习分为以下四种类型:监督学习、非监督学习、半监督学习和强化学习。  在监督学习中,提供给算法的包含所需解决方案的训练数据,成为标签或标记。  简单地说,就是监督学习是包含自变量和因变量(有Y),同时

    2024年02月14日
    浏览(45)
  • 强化学习简介

    强化学习(Reinforcement Learning,RL) 是机器学习中的一个领域,是学习“做什么(即如何把当前的情景映射成动作)才能使得数值化的收益信号最大化”。学习者不会被告知应该采取什么动作,而是必须自己通过尝试去发现哪些动作会产生最丰厚的收益。 强化学习同机器学习

    2024年02月07日
    浏览(31)
  • 机器学习:无监督学习

    Kmeans 随机选取K个中心,然后计算每个点与中心的距离,找最近的,然后更新中心点 HAC 如何觉得距离的个数跟kmeans不一样,切的地方不一样导致的数量会不一样。 降维 PCA 特征先归一化,然后计算投影,选择最大的方差的 w 1 w_1 w 1 ​ 与 w 2 w_2 w 2 ​ 是垂直的,后续也是找垂

    2024年02月10日
    浏览(40)
  • 机器学习半监督学习

    半监督学习是一种机器学习的方法,它结合了监督学习和无监督学习的特点。在半监督学习中,训练数据中只有一部分数据是带有标签的,另外一部分数据是没有标签的。 半监督学习的目标是通过利用未标记数据的信息来提高模型的性能。这种方法可以有效地利用数据,因为

    2024年02月13日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包