毕设 - 天气数据分析与可视化 天气预测 lstm

这篇具有很好参考价值的文章主要介绍了毕设 - 天气数据分析与可视化 天气预测 lstm。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 前言

🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。

为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是

🚩 天气数据分析与可视化 天气预测 lstm

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 选题指导, 项目分享:

https://gitee.com/dancheng-senior/project-sharing-1/blob/master/%E6%AF%95%E8%AE%BE%E6%8C%87%E5%AF%BC/README.md

2 项目简介

本实例将对意大利北部沿海地区的气象数据进行分析与可视化。首先会运用 Python 中 matplotlib 库对数据进行图表化处理,然后调用 scikit-learn 库当中的的 SVM 库对数据进行回归分析,最终在图表分析的支持下得出我们的结论。

为什么选择意大利? 因为有现成的数据集,如果要分析其他地方的数据,去采集爬取即可。

3 开始分析

气象数据是在网上很容易找到的一类数据。很多网站都提供以往的气压、气温、湿度和降雨量等气象数据。只需指定位置和日期,就能获取一个气象数据文件。这些测量数据是由气象站收集的。气象数据这类数据源涵盖的信息范围较广。数据分析的目的是把原始数据转化为信息,再把信息转化为知识,因此拿气象数据作为数据分析的对象来讲解数据分析全过程再合适不过。

3.1 海洋对当地气候的影响

意大利是一个被海洋包围的半岛国家。为什么要把自己的选择局限在意大利呢?因为我们所研究的问题刚好和意大利人的一种典行为相关,也就是夏天我们喜欢躲在海边,以躲避内陆的酷热。意大利是半岛国家,找到可研究的海域不是问题,但是如何衡量海洋对其远近不同的地方的影响?这就引出了一个大问题。意大利其实多山地,离海差不多远,可以彼此作为参照的内陆区域较少。为了衡量海洋对气候的影响,我排除了山地,因为山地也许会引入其他很多因素,比如海拔。

意大利波河流域这块区域就很适合研究海洋对气候的影响。这一片平原东起亚得里亚海,向内陆延伸数百公里(见图1)。它周边虽不乏群山环绕,但由于它很宽广,削弱了群山的影响。此外,该区域城镇密集,也便于选取一组离海远近不同的城市。我们所选的几个城市,两个城市间的最大距离约为 400 公里。

毕设 - 天气数据分析与可视化 天气预测 lstm

第一步,选 10 个城市作为参照组。选择城市时,注意它们要能代表整个平原地区

毕设 - 天气数据分析与可视化 天气预测 lstm

如图2所示,我们选取了 10 个城市。随后将分析它们的天气数据,其中 5 个城市在距海 100 公里范围内,其余 5 个距海 100~400 公里。

选作样本的城市列表如下:

  • Ferrara(费拉拉)
  • Torino(都灵)
  • Mantova(曼托瓦)
  • Milano(米兰)
  • Ravenna(拉文纳)
  • Asti(阿斯蒂)
  • Bologna(博洛尼亚)
  • Piacenza(皮亚琴察)
  • Cesena(切塞纳)
  • Faenza(法恩莎)

接下来,我们需要计算这些城市离海有多远。这里使用 TheTimeNow 网站提供的服务,以海滨城市 Comacchio 作为基点,计算其他城市与它之间的距离:

毕设 - 天气数据分析与可视化 天气预测 lstm

3.2 导入数据集

下载好数据集后,导入相关包,加载相关数据,开始相关分析。

import numpy as np
import pandas as pd
import datetime

df_ferrara = pd.read_csv('WeatherData/ferrara_270615.csv')
df_milano = pd.read_csv('WeatherData/milano_270615.csv')
df_mantova = pd.read_csv('WeatherData/mantova_270615.csv')
df_ravenna = pd.read_csv('WeatherData/ravenna_270615.csv')
df_torino = pd.read_csv('WeatherData/torino_270615.csv')
df_asti = pd.read_csv('WeatherData/asti_270615.csv')
df_bologna = pd.read_csv('WeatherData/bologna_270615.csv')
df_piacenza = pd.read_csv('WeatherData/piacenza_270615.csv')
df_cesena = pd.read_csv('WeatherData/cesena_270615.csv')
df_faenza = pd.read_csv('WeatherData/faenza_270615.csv')

查看数据集结构:

毕设 - 天气数据分析与可视化 天气预测 lstm

3.3 温度数据分析

非常简单的分析方法是先分析一天中气温的变化趋势。以城市米兰为例。

# 温度和日期数据
x1 = df_milano['day']
y1 = df_milano['temp']

# 把日期数据转换成 datetime 的格式
day_milano = [parser.parse(x) for x in x1]

fig, ax = plt.subplots()
# 调整x轴坐标刻度,使其旋转70度,方便查看
plt.xticks(rotation=70)  
hours = mdates.DateFormatter('%H:%M')
# 设定X轴显示的格式
ax.xaxis.set_major_formatter(hours)  
ax.plot(day_milano ,y1, 'r')

由图可见,气温走势接近正弦曲线,从早上开始气温逐渐升高,最高温出现在下午两点到六点之间,随后气温逐渐下降,在第二天早上六点时达到最低值。

毕设 - 天气数据分析与可视化 天气预测 lstm
学长进行数据分析的目的是尝试解释是否能够评估海洋是怎样影响气温的,以及是否能够影响气温趋势,因此我们同时来看几个不同城市的气温趋势。这是检验分析方向是否正确的唯一方式。

因此,我选择三个离海最近以及三个离海最远的城市。

# 读取温度和日期数据
y1 = df_ravenna['temp']
x1 = df_ravenna['day']
y2 = df_faenza['temp']
x2 = df_faenza['day']
y3 = df_cesena['temp']
x3 = df_cesena['day']
y4 = df_milano['temp']
x4 = df_milano['day']
y5 = df_asti['temp']
x5 = df_asti['day']
y6 = df_torino['temp']
x6 = df_torino['day']

# 把日期从 string 类型转化为标准的 datetime 类型
day_ravenna = [parser.parse(x) for x in x1]
day_faenza = [parser.parse(x) for x in x2]
day_cesena = [parser.parse(x) for x in x3]
day_milano = [parser.parse(x) for x in x4]
day_asti = [parser.parse(x) for x in x5]
day_torino = [parser.parse(x) for x in x6]

fig, ax = plt.subplots()
plt.xticks(rotation=70)
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)

ax.plot(day_ravenna,y1,'r',day_faenza,y2,'r',day_cesena,y3,'r')
ax.plot(day_milano,y4,'g',day_asti,y5,'g',day_torino,y6,'g')

离海最近的三个城市的气温曲线使用红色,而离海最远的三个城市的曲线使用绿色。

毕设 - 天气数据分析与可视化 天气预测 lstm
结果分析:离海最近的三个城市的最高气温比离海最远的三个城市低不少,而最低气温看起来差别较小。

我们可以沿着这个方向做深入研究,收集10个城市的最高温和最低温,用线性图表示气温最值点和离海远近之间的关系。

# dist 是一个装城市距离海边距离的列表
dist = [df_ravenna['dist'][0],
    df_cesena['dist'][0],
    df_faenza['dist'][0],
    df_ferrara['dist'][0],
    df_bologna['dist'][0],
    df_mantova['dist'][0],
    df_piacenza['dist'][0],
    df_milano['dist'][0],
    df_asti['dist'][0],
    df_torino['dist'][0]
]

# temp_max 是一个存放每个城市最高温度的列表
temp_max = [df_ravenna['temp'].max(),
    df_cesena['temp'].max(),
    df_faenza['temp'].max(),
    df_ferrara['temp'].max(),
    df_bologna['temp'].max(),
    df_mantova['temp'].max(),
    df_piacenza['temp'].max(),
    df_milano['temp'].max(),
    df_asti['temp'].max(),
    df_torino['temp'].max()
]

# temp_min 是一个存放每个城市最低温度的列表
temp_min = [df_ravenna['temp'].min(),
    df_cesena['temp'].min(),
    df_faenza['temp'].min(),
    df_ferrara['temp'].min(),
    df_bologna['temp'].min(),
    df_mantova['temp'].min(),
    df_piacenza['temp'].min(),
    df_milano['temp'].min(),
    df_asti['temp'].min(),
    df_torino['temp'].min()

最高气温
先把最高温画出来。

毕设 - 天气数据分析与可视化 天气预测 lstm
如图所示,海洋对气象数据具有一定程度的影响这个假设是正确的(至少一天内如此)。而且从图中可以发现,海洋的影响衰减的很快,离海60~70公里开外,气温就已攀升到高位。

用线性回归算法(scikit-learn库的SVR)得到两条直线,分别表示两种不同的气温趋势。

(这段代码会跑比较久的时间)

from sklearn.svm import SVR

# dist1是靠近海的城市集合,dist2是远离海洋的城市集合
dist1 = dist[0:5]
dist2 = dist[5:10]

# 改变列表的结构,dist1现在是5个列表的集合
# 之后我们会看到 numpy 中 reshape() 函数也有同样的作用
dist1 = [[x] for x in dist1]
dist2 = [[x] for x in dist2]

# temp_max1 是 dist1 中城市的对应最高温度
temp_max1 = temp_max[0:5]
# temp_max2 是 dist2 中城市的对应最高温度
temp_max2 = temp_max[5:10]

# 我们调用SVR函数,在参数中规定了使用线性的拟合函数
# 并且把 C 设为1000来尽量拟合数据(因为不需要精确预测不用担心过拟合)
svr_lin1 = SVR(kernel='linear', C=1e3)
svr_lin2 = SVR(kernel='linear', C=1e3)

# 加入数据,进行拟合(这一步可能会跑很久,大概10多分钟,休息一下:) )
svr_lin1.fit(dist1, temp_max1)
svr_lin2.fit(dist2, temp_max2)

# 关于 reshape 函数请看代码后面的详细讨论
xp1 = np.arange(10,100,10).reshape((9,1))
xp2 = np.arange(50,400,50).reshape((7,1))
yp1 = svr_lin1.predict(xp1)
yp2 = svr_lin2.predict(xp2)

然后绘图

毕设 - 天气数据分析与可视化 天气预测 lstm
如上所见,离海 60 公里以内,气温上升速度很快,从 28 度陡升至 31 度,随后增速渐趋缓和(如果还继续增长的话),更长的距离才会有小幅上升。这两种趋势可分别用两条直线来表示,直线的表达式为:

y = ax + b(其中 a 为斜率,b 为截距。)

考虑将这两条直线的交点作为受海洋影响和不受海洋影响的区域的分界点,或者至少是海洋影响较弱的分界点。

3.4 湿度数据分析

考察当天三个近海城市和三个内陆城市的湿度趋势。

# 读取湿度数据
y1 = df_ravenna['humidity']
x1 = df_ravenna['day']
y2 = df_faenza['humidity']
x2 = df_faenza['day']
y3 = df_cesena['humidity']
x3 = df_cesena['day']
y4 = df_milano['humidity']
x4 = df_milano['day']
y5 = df_asti['humidity']
x5 = df_asti['day']
y6 = df_torino['humidity']
x6 = df_torino['day']

# 重新定义 fig 和 ax 变量
fig, ax = plt.subplots()
plt.xticks(rotation=70)

# 把时间从 string 类型转化为标准的 datetime 类型
day_ravenna = [parser.parse(x) for x in x1]
day_faenza = [parser.parse(x) for x in x2]
day_cesena = [parser.parse(x) for x in x3]
day_milano = [parser.parse(x) for x in x4]
day_asti = [parser.parse(x) for x in x5]
day_torino = [parser.parse(x) for x in x6]

# 规定时间的表示方式
hours = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(hours)

#表示在图上
ax.plot(day_ravenna,y1,'r',day_faenza,y2,'r',day_cesena,y3,'r')
ax.plot(day_milano,y4,'g',day_asti,y5,'g',day_torino,y6,'g')

毕设 - 天气数据分析与可视化 天气预测 lstm

从图中看好像近海城市湿度要大于内陆城市,全天湿度差距在20%左右。

3.5 风向频率玫瑰图

在采集的每个城市的气象数据中,下面两个与风有关:

  • 风力(风向)
  • 风速

分析数据发现,风速不仅跟一天的时间段相关联,还与一个介于0!360度的方向有关。(每一条测量数据包含风吹来的方向。)

对于风力数据,将其制作成线性图不是最佳选择。这里试着做一个散点图:

毕设 - 天气数据分析与可视化 天气预测 lstm

但该图表现力也不足。

要表示360度分布的数据点,最好使用另一种可视化方法:极区图。先创建一个直方图,也就是将360度分为八个面元,每个面元为45度,把所有的数据点分到这八个面元中。

def showRoseWind(values,city_name,max_value):
    N = 8

    # theta = [pi*1/4, pi*2/4, pi*3/4, ..., pi*2]
    theta = np.arange(0.,2 * np.pi, 2 * np.pi / N)
    radii = np.array(values)
    # 绘制极区图的坐标系
    plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)

    # 列表中包含的是每一个扇区的 rgb 值,x越大,对应的color越接近蓝色
    colors = [(1-x/max_value, 1-x/max_value, 0.75) for x in radii]

    # 画出每个扇区
    plt.bar(theta, radii, width=(2*np.pi/N), bottom=0.0, color=colors)

    # 设置极区图的标题
    plt.title(city_name, x=0.2, fontsize=20)

毕设 - 天气数据分析与可视化 天气预测 lstm

定义好 showRoseWind() 函数之后,查看其他城市的风向情况也非常简单。

毕设 - 天气数据分析与可视化 天气预测 lstm

3.6 计算风速均值的分布情况

即使是跟风速相关的其他数据,也可以用极区图来表示。

定义 RoseWind_Speed 函数,计算将 360 度范围划分成的八个面元中每个面元的平均风速。

def RoseWind_Speed(df_city):
    # degs = [45, 90, ..., 360]
    degs = np.arange(45,361,45)
    tmp = []
    for deg in degs:
        # 获取 wind_deg 在指定范围的风速平均值数据
        tmp.append(df_city[(df_city['wind_deg']>(deg-46)) & (df_city['wind_deg']<deg)]
        ['wind_speed'].mean())
    return np.array(tmp)

毕设 - 天气数据分析与可视化 天气预测 lstm文章来源地址https://www.toymoban.com/news/detail-455372.html

4 最后

到了这里,关于毕设 - 天气数据分析与可视化 天气预测 lstm的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 大数据设计基于Hadoop全国天气可视化分析系统

      全国天气可视化分析系统主要功能模块包括系统首页、轮播图、公告消息、资源管理(天气资讯、资讯分类)系统用户(管理员、普通用户)模块管理(天气信息、降水数据),采取面对对象的开发模式进行软件的开发和硬体的架设,能很好的满足实际使用的需求,完善

    2024年04月14日
    浏览(47)
  • python爬取天气数据并做可视化分析

    历史天气数据schema { ‘当日信息’:\\\'2023-01-01 星期日\\\', \\\'最高气温\\\': 8℃\\\'\\\', \\\'最低气温\\\': \\\'5℃\\\', ‘天气’: \\\'多云\\\', \\\'风向信息\\\':\\\'北风 3级\\\' } 1.导入库 2.对程序进行伪装 3.抓取天气数据 在数据存储前,对数据进行处理,便于后期的数据分析。将上面的“当天信息”字段拆分为“日期”

    2024年02月04日
    浏览(32)
  • 城市房价数据可视化分析 计算机毕设 数据分析大数据毕设

    1.读数据表 首先,读取数据集。 CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT target 0.00632 18 2.31 0 0.538 6.575 65.2 4.09 1 296 15.3 396.9 4.98 24 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.9 9.14 21.6 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.

    2024年02月20日
    浏览(32)
  • 毕设 大数据电影数据分析与可视化系统

    今天学长向大家介绍一个机器视觉的毕设项目 🚩基于大数据的电影数据分析与可视化系统 项目运行效果(视频): 毕业设计 大数据电影评论情感分析 项目获取: https://gitee.com/sinonfin/algorithm-sharing 研究中国用户电影数据,有助于窥探中国电影市场发展背后的规律,理解其来龙去

    2024年02月04日
    浏览(43)
  • 大数据毕设 大数据招聘岗位数据分析与可视化 - 爬虫 python 大屏可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月10日
    浏览(45)
  • 【python】python课设 天气预测数据分析及可视化(完整源码)

    1. 前言 本文介绍了天气预测数据分析及可视化的实现过程使用joblib导入模型和自定义模块GetModel获取模型,输出模型的MAE。使用pyecharts库进行天气数据的可视化,展示南京当日天气数据的表格。总体来说,该文叙述通过调用自定义模块和第三方库,获取天气数据、进行模型预

    2024年02月04日
    浏览(32)
  • 大数据毕设分享 大数据二手房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年01月23日
    浏览(44)
  • python毕设选题 - 大数据上海租房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月19日
    浏览(42)
  • python毕设选题 - 大数据二手房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年01月20日
    浏览(48)
  • 计算机毕设 大数据上海租房数据爬取与分析可视化 -python 数据分析 可视化

    # 1 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项

    2024年02月07日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包