NLP:palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介、安装、使用方法之详细攻略

这篇具有很好参考价值的文章主要介绍了NLP:palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介、安装、使用方法之详细攻略。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

NLP:palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介、安装、使用方法之详细攻略

目录

palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介

palm-rlhf-pytorc的安装

palm-rlhf-pytorc的使用方法

1、基础用法


palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介

      palm-rlhf-pytorch是基于PaLM架构的RLHF(人类反馈强化学习)的实现。开发者后续可能会添加检索功能。这个代码库是一个基于PyTorch实现的自然语言处理模型,它结合了PaLM(Pretraining-augmented Language Model)和RLHF(Reinforcement Learning with Hybrid Feedback)两种技术。PaLM是一种预训练语言模型,它可以通过大规模的无监督学习来学习语言的表示。RLHF是一种增强学习技术,它可以通过与环境的交互来学习最优的行为策略。
      PaLM-rlhf-pytorch模型的目标是解决自然语言处理中的一些问题,例如文本分类、命名实体识别、情感分析等。该模型的优点包括:
>> 预训练模型:PaLM-rlhf-pytorch使用预训练模型来学习语言表示,这可以提高模型的泛化能力和效率。
>> 增强学习技术:PaLM-rlhf-pytorch使用增强学习技术来学习最优的行为策略,这可以提高模型的性能和鲁棒性。
>> PyTorch实现:PaLM-rlhf-pytorch是基于PyTorch实现的,这使得模型的训练和部署都非常方便。
      总之,PaLM-rlhf-pytorch是一个非常有前途的自然语言处理模型,它结合了预训练模型和增强学习技术,可以用于解决多种自然语言处理问题。如果您对自然语言处理感兴趣,可以尝试使用这个模型进行实验和研究。

GitHub地址

GitHub - lucidrains/PaLM-rlhf-pytorch: Implementation of RLHF (Reinforcement Learning with Human Feedback) on top of the PaLM architecture. Basically ChatGPT but with PaLM
 

palm-rlhf-pytorc的安装

pip install palm-rlhf-pytorch

palm-rlhf-pytorc的使用方法

1、基础用法

首先,像训练其他自回归变换器一样,训练PaLM。

import torch
from palm_rlhf_pytorch import PaLM

palm = PaLM(
    num_tokens = 20000,
    dim = 512,
    depth = 12,
    flash_attn = True # https://arxiv.org/abs/2205.14135
).cuda()

seq = torch.randint(0, 20000, (1, 2048)).cuda()

loss = palm(seq, return_loss = True)
loss.backward()

# after much training, you can now generate sequences

generated = palm.generate(2048) # (1, 2048)

然后,使用策划的人类反馈训练奖励模型。在原始论文中,他们无法从预训练的transformer 中微调奖励模型而不过度拟合,但我仍然提供了使用LoRA微调的选项,因为它仍然是开放研究。

import torch
from palm_rlhf_pytorch import PaLM, RewardModel

palm = PaLM(
    num_tokens = 20000,
    dim = 512,
    depth = 12,
    causal = False
)

reward_model = RewardModel(
    palm,
    num_binned_output = 5 # say rating from 1 to 5
).cuda()

# mock data

seq = torch.randint(0, 20000, (1, 1024)).cuda()
prompt_mask = torch.zeros(1, 1024).bool().cuda() # which part of the sequence is prompt, which part is response
labels = torch.randint(0, 5, (1,)).cuda()

# train

loss = reward_model(seq, prompt_mask = prompt_mask, labels = labels)
loss.backward()

# after much training

reward = reward_model(seq, prompt_mask = prompt_mask)

接下来,将您的transformer 和奖励模型传递给RLHFTrainer。文章来源地址https://www.toymoban.com/news/detail-455977.html

import torch
from palm_rlhf_pytorch import PaLM, RewardModel, RLHFTrainer

# load your pretrained palm

palm = PaLM(
    num_tokens = 20000,
    dim = 512,
    depth = 12
).cuda()

palm.load('./path/to/pretrained/palm.pt')

# load your pretrained reward model

reward_model = RewardModel(
    palm,
    num_binned_output = 5
).cuda()

reward_model.load('./path/to/pretrained/reward_model.pt')

# ready your list of prompts for reinforcement learning

prompts = torch.randint(0, 256, (50000, 512)).cuda() # 50k prompts

# pass it all to the trainer and train

trainer = RLHFTrainer(
    palm = palm,
    reward_model = reward_model,
    prompt_token_ids = prompts
)

trainer.train(num_episodes = 50000)

# then, if it succeeded...
# generate say 10 samples and use the reward model to return the best one

answer = trainer.generate(2048, prompt = prompts[0], num_samples = 10) # (<= 2048,)

到了这里,关于NLP:palm-rlhf-pytorch(一种类ChatGPT的开源替代方案PaLM+RLHF)的简介、安装、使用方法之详细攻略的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ChatGPT 中的人类反馈强化学习 (RLHF) 实战

    团队博客: CSDN AI小组 相关阅读 ChatGPT 简介 大语言模型浅探一 关于 ChatGPT 必看的 10 篇论文 从 ELMo 到 ChatGPT:历数 NLP 近 5 年必看大模型 在当今数字化的时代,ChatGPT 的火热程度不断升级。ChatGPT 可以处理复杂的语言任务,从而解放人力资源,提高工作效率,减少成本。ChatGPT

    2023年04月25日
    浏览(79)
  • LLMs:ColossalChat相关的开源训练数据集简介(SFT指令微调数据集+奖励模型排序数据集+RLHF数据集)、RLHF算法实现的三个阶段(监督指令微调→训练奖励模型→RLHF训练模型→​​​

    LLMs:ColossalChat相关的开源训练数据集简介(SFT指令微调数据集+奖励模型排序数据集+RLHF数据集)、RLHF算法实现的三个阶段(监督指令微调→训练奖励模型→RLHF训练模型→推理量化和服务)   目录 ColossalChat的使用方法 1、ColossalChat相关的开源训练数据集 (1)、SFT指令微调数据集

    2024年02月14日
    浏览(41)
  • OpenAI ChatGPT vs 谷歌 Bard PaLM2 —— 人类堕入“囚徒困境”?

      目录 引 1 羊群效应: 竞争中的非理性 2 幸存者偏差: 被淘汰者不说话

    2024年02月09日
    浏览(36)
  • 基于Ray和vLLM构建70B+模型的开源RLHF全量训练框架

    背景 ChatGPT 已经问世一年+了,在训练 ChatGPT 中必不可少的一环是 RLHF 训练,目前开源社区已经有了不少 RLHF 训练框架比如,TRL, DeepSpeedChat 或者最近热门的 LLaMA Factory。这些框架往往是基于 ZeRO 等并行方式,将 RLHF 算法中的四个模型切片后放到同一个 GPU 上。在模型规模越来越

    2024年01月22日
    浏览(52)
  • DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍

    近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮。 这场风潮对数字世界产生了革命性影响。ChatGPT类模型具有惊人的泛用性,能够执行归纳、编程、翻译等任务,其结果与人类专家相当甚至更优。为了使ChatGPT等模型的训练和部署更轻松,AI 开源社区进行了各种

    2023年04月19日
    浏览(52)
  • AIGC:ColossalChat(基于LLM和RLHF技术的类似ChatGPT的聊天机器人)的简介、安装、使用方法之详细攻略

    LLMs:ColossalChat(基于LLM和RLHF技术的类似ChatGPT的聊天机器人)/ColossalAI的简介、安装、使用方法之详细攻略 导读 :ColossalChat 是 第一个 基于LLaMA预训练模型 开源完整RLHF pipline实现 ,包括有监督数据收集、有监督微调、奖励模型训练和强化学习微调。只需要 不到100亿个参数 ,就

    2024年02月09日
    浏览(54)
  • 【python、pytorch】NLP模型

    自然语言处理(Natural Language Processing,简称NLP)是计算机科学与语言学中关注于计算机与人类语言间转换的领域。 实现可分为以下五个步骤: 第一步:导入必备的工具包 第二步:对data文件中的数据进行处理,满足训训练要求 第三步:构建模型 第四步:构建训练函数进行训练

    2024年02月02日
    浏览(36)
  • nlp系列(7)实体识别(Bert)pytorch

    本项目是使用Bert模型来进行文本的实体识别。 Bert模型介绍可以查看这篇文章: NLP系列(2)文本分类(Bert)pytorch_bert文本分类-CSDN博客 Bert模型的模型结构: 数据网址:​​​​​​https://github.com/buppt//raw/master/data/people-relation/train.txt 实体1  实体2  关系 文本 输入中文句子

    2024年02月10日
    浏览(33)
  • 【NLP相关】开源中文NLP大模型及项目集合

    ❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博相关......)👈 自然语言处理领域存在很多开源模型和项目,这也使得自然语言处理的相关

    2023年04月24日
    浏览(42)
  • 【NLP】一个使用PyTorch实现图像分类的迁移学习实例

    在特征提取中,可以在预先训练好的网络结构后修改或添加一个简单的分类器,然后将源任务上预先训练好的网络作为另一个目标任务的特征提取器,只对最后增加的分类器参数重新学习,而预先训练好的网络参数不被修改或冻结。 在完成新任务的特征提取时使用的是源任务

    2024年02月14日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包