切比雪夫不等式,大数定律及极限定理。

这篇具有很好参考价值的文章主要介绍了切比雪夫不等式,大数定律及极限定理。。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一.切比雪夫不等式

1.定理

若随机变量X的期望EX和方差DX存在,则对任意ε > 0,有
  P{ |X - EX| >= ε } <= DX/ε2P{ |X - EX| < ε } >= 1 - DX/ε2
切比雪夫不等式,大数定律及极限定理。

2.解析定理

①该定理对 X 服从什么分布不做要求,仅EX DX存在即可。

②“| |” 由于X某次试验结果可能大于期望值,也可能小于期望值,但总在其旁边波动,所
以加"| |"。

③根据期望定义知,N次试验X的取值,总是徘徊在EX的附近,即 (EX - ε, EX + ε) 之间的可能性很大很大, 而落在 外边 的概率应特别小,比 DX/ε2 还要小。
切比雪夫不等式,大数定律及极限定理。

3.关于 DX/ε2

①DX为方差,DX越小,波动性越小,则N次X取值分布就越集中,则落在外边的概率就越小,则P{ |X - EX| >= ε } 就越小。

②DX为方差,影响不等式的因素之一,但切比雪夫不等式也反过来证明了DX存在的意义
  由不等式知DX越小,P{ |X - EX| >= ε }越小,X分布越集中于EX。这表明方差DX是 刻画随机变量与其期望值偏离程度的量 ,是描述随机变量X “分散程度” 特征的指标。故DX也属于X的数字特征之一。

4.证明切比雪夫不等式

切比雪夫不等式,大数定律及极限定理。

5.广义化切比雪夫不等式

切比雪夫不等式,大数定律及极限定理。

6.切比雪夫不等式应用

①可以估算随机变量X在某范围取值的概率
切比雪夫不等式,大数定律及极限定理。

②可以证明某些收敛性问题(如:证明大数定理)
后面有

二.依概率收敛

1.通常认知的收敛与依概率收敛的区别

①我们通常认知的收敛:(以数列收敛为例)
  an -> a : ∀ε > 0 , ョN > 0, 当 n > N 时 ,总有 “|Xn - a| < ε”.
即存在某一项,这项后面的所有项都绝对落在区域(a - ε , a + ε)之间。
切比雪夫不等式,大数定律及极限定理。
②依概率收敛:
  Xn - X:∀ε > 0 , ョN > 0, 当 n > N 时 ,“有概率为1的可能” 使 “|Xn - a| < ε”.
即存在某一项,这项后面所有项,“有概率为1的可能” 落在区间为(X - ε, X + ε)之间。

注:我们知道概率为 1 的事件 未必是绝对事件,所以 在某项之后的所有项中 ,还是有极少不听话的 “X” 落在了(X - ε, X + ε) 之外,但不影响整体的敛散性。
切比雪夫不等式,大数定律及极限定理。
综上就是 “依概率收敛” 和 “收敛” 的区别:
  ①收敛:在某项之后,是绝对趋于某值的,有且仅有一直逼向某值的可能。
  ②依概率收敛:在某项之后,未必绝对趋于某值,因为概率为1得事件未必是绝对事件。
(概率为1 < 绝对)
这就是为啥叫依概率收敛。(依的就是这个1,X在某项之后的所有项,有1的概率会落在(X - ε, X + ε)之间

2.举个例子理解依概率收敛,以及为啥会出现依概率收敛。

例子:若我们抛出了N次硬币,N 很大很大很大。N是偶数。出现正面的次数为 N/2,N/2次反面。
切比雪夫不等式,大数定律及极限定理。
①按照通常收敛定义知: 如果我们再次抛出硬币 k 次。那么,这k次后,Xn的概率应该只能更加逼近 1/2.而不可能出现其他情况。
但事实上,我们很有可能在再抛出k次之后 Xn的概率会变成 1/3。故通常的收敛已经不适用如上场景。

②依概率收敛: 当抛出 N 次后 Xn概率为 1/2后。再抛出k 次统计正面朝上概率为1/2的概率是1。但是概率为1的事件未必是绝对事件,只是可能性很大很大很大,但还是有可能出现其他概率的不为1/2了。这就完美了描述了上述场景。

三.大数定律

1.伯努利大数定律

注:伯努利大数定律告诉我们,当试验次数足够大时,用频率估算概率这件事是可靠的

①伯努利大数定理

切比雪夫不等式,大数定律及极限定理。
n趋向于无穷大时,事件A在n重伯努利事件中发生的频率fn/n无限接近于事件A在一次实验中发生的概率p。

②证明伯努利大数定理(夹逼准则+切比雪夫不等式)

切比雪夫不等式,大数定律及极限定理。

2.切比雪夫大数定律

①切比雪夫大数定律

切比雪夫不等式,大数定律及极限定理。

注1:X1,X2…Xn两两不相关。
注2:X1,X2…Xn不要求同分布。
注3:仅要求EXi DXi存在且DXi有界。
注4:这个表达式是由伯努利大数定理推出来的。基于“频率 估算 概率“的可靠性来的
切比雪夫不等式,大数定律及极限定理。

②证明切比雪夫大数定律

切比雪夫不等式,大数定律及极限定理。

3.切比雪夫大数定律推论

切比雪夫不等式,大数定律及极限定理。
注1:不相关 弱化为 独立
注2:无分布要求 弱化为 同分布
注3:Exi Dxi存在 弱化为 有具体值。
一般就考这个,因为更一般化的不好出题。

4.辛钦大数定律

将切比雪夫大数定律推论的条件再次弱化。即去掉方差要求,即为辛钦大数定律。
切比雪夫不等式,大数定律及极限定理。
此结论依然成立。
注:重点常用这个,因为条件弱化更容易出题。

5.总结大数定律

①伯努利大数定律给出:
  用频率估算概率这件事是靠谱的。
(即当试验总够大,频率 依概率收敛 于它的概率)
(用夹逼+切比雪夫不等式证明)

②基于“频率 依概率收敛于 概率”的可靠性,得出“切比雪夫大数定律”及其推论。
(即当Xi互不相关,EXi DXi 存在且DXi有界,∀ε >0有X均值 依概率收敛 于数学期望的均值)
(推论:即Xi相互独立,Exi = u,DXi = σ2,∀ε >0有X均值 依概率收敛 于数学期望u)
(用夹逼+切比雪夫不等式证)

③基于"切比雪夫大数定律推论"弱化其条件,得到辛钦大数定律。
(即Xi相互独立,Exi = u,∀ε >0有X均值 依概率收敛 于数学期望u)

④大数定律告诉我们两件事:
用频率估算概率很靠谱。
用X的均值估算X数学期望很靠谱。

四.中心极限定理

先略。文章来源地址https://www.toymoban.com/news/detail-456160.html

到了这里,关于切比雪夫不等式,大数定律及极限定理。的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 第五章——大数定律和中心极限定理

    前言:极限定理是概率论的基本理论,在理论研究和应用中起着重要的作用,其中最重要的是称为大数定律和中心极限定理的一些定理。 大数定律是叙述随机变量序列的前一些项的算术平均值在某些条件下收敛到这些项的均值的算术平均值。也就是从总体中抽出一部分样本,

    2024年02月11日
    浏览(51)
  • 马尔科夫不等式和坎泰利不等式的证明

    马尔科夫不等式(Markov’s inequality) 对于随机变量 X X X ,有 P ( ∣ X ∣ ⩾ ε ) ⩽ E ∣ X ∣ k ε k , ε 0 , k ∞ Pleft( left| X right|geqslant varepsilon right) leqslant frac{Eleft| X right|^k}{varepsilon ^k},varepsilon 0,kinfty P ( ∣ X ∣ ⩾ ε ) ⩽ ε k E ∣ X ∣ k ​ , ε 0 , k ∞ 证明: P ( ∣ X ∣ ⩾ ε

    2024年02月08日
    浏览(40)
  • 优化问题----等式约束与不等式约束问题求解

    目录 先总结一波: 1. 等式约束问题求解 (1)一阶必要条件 (2)二阶充分条件 2.不等式约束问题求解 2.1 可行下降方向 2.2 KTT条件(Kuhn-Tucker条件) (1)Gordan定理 (2)Fritz John定理 (3)KTT条件  (4)KTT的一个应用实例 对于无约束极值问题,可以采用解析方法和直接方法两

    2024年02月05日
    浏览(50)
  • Hoeffing不等式

    设 X 1 , X 2 , . . . , X N X_1,X_2,...,X_N X 1 ​ , X 2 ​ , ... , X N ​ 是独立随机变量,且 X i ∈ [ a i , b i ] , i = 1 , 2 , . . . , N ; S N = ∑ i = 1 N X i X_iin[a_i,b_i],i=1,2,...,N;S_N=sum_{i=1}^NX_i X i ​ ∈ [ a i ​ , b i ​ ] , i = 1 , 2 , ... , N ; S N ​ = ∑ i = 1 N ​ X i ​ ,则对任意t0,以下不等式成立:

    2024年02月07日
    浏览(41)
  • 不等式证明(三)

    设 p , q p ,q p , q 是大于1的常数,并且 1 p + 1 q = 1 frac{1}{p}+frac{1}{q}=1 p 1 ​ + q 1 ​ = 1 .证明:对于任意的 x 0 x0 x 0 ,有 1 p x p + 1 q ≥ x frac{1}{p}x^p+frac{1}{q}geq x p 1 ​ x p + q 1 ​ ≥ x . 证明 : 设 f ( x ) = 1 p x p + 1 q − x (1) f(x)=frac{1}{p}x^p+frac{1}{q}- xtag{1} f ( x ) = p 1 ​ x p + q 1 ​

    2024年01月21日
    浏览(48)
  • 放缩不等式推导

    放缩不等式推导 1 )   a x x + 1 ( 1 a ≤ e , x 0 ; a ≥ e , x 0 ) ; 1) a^xx+1left(1aleq e,x0;ageq e,x0right); 1 )   a x x + 1 ( 1 a ≤ e , x 0 ; a ≥ e , x 0 ) ; p r o o f : proof: p roo f : f 01 ( x ) = a x − ( x + 1 ) ⇒ f 01 ′ ( x ) = a x ln ⁡ a − 1 f_{01}left(xright)=a^{x}-left(x+1right)Rightarrow f_{01}^{\\\'}left(xright) =

    2023年04月22日
    浏览(44)
  • 各种数学不等式

    以丹麦技术大学数学家约翰·延森(John Jensen)命名。它给出积分的凸函数值和凸函数的积分值间的关系。 是数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。 是柯西不等式的推广. 赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hölder) 是德国

    2024年02月14日
    浏览(41)
  • 高中数学:不等式(初接高)

    最后的例题,是为了说明第三种情况,就是,不等号右边不为0时,要先进行移项操作。 将右边化为0 这样,就转化成1,2两种情况了。 补充: 不等式解法中,对于根式的转化,要考虑仔细,不能少考虑了情况,否则求出的结果就出错。 这个,也是最难的,最考验答题人的细心

    2024年01月24日
    浏览(50)
  • 四边形不等式学习笔记

    四边形不等式是一种 dp 优化策略。多用于 2D DP。 对于区间 ([l,r]) 带来的贡献 (w(l,r)) ,如果其满足: 对于 (Lleq lleq r leq R) , (w(L,r)+w(l,R)leq w(L,R)+w(l,r)) 则称 (w) 满足 四边形不等式 。特别地,如果上式符号取等,则称其满足 四边形恒等式 。 注:上面的不等式可以记

    2023年04月10日
    浏览(48)
  • 冶炼金属【暴力枚举 + 二分 + 二元不等式】

    😊😊 😊😊 不求点赞,只求耐心看完,指出您的疑惑和写的不好的地方,谢谢您。本人会及时更正感谢。希望看完后能帮助您理解算法的本质 😊😊 😊😊 小蓝有一个神奇的炉子用于将普通金属 O 冶炼成为一种特殊金属 X。这个炉子有一个称作转换率的属性 V V V , V V V 是

    2024年02月02日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包