自动驾驶感知——激光雷达物体检测算法

这篇具有很好参考价值的文章主要介绍了自动驾驶感知——激光雷达物体检测算法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 基于激光雷达的物体检测

1.1 物体检测的输入与输出

自动驾驶感知——激光雷达物体检测算法输入
❖ 点:X, Y, Z和反射强度R
❖ 点云:多个点的集合(无序的,非结构化的数据)
输出
❖ 目标的类别和置信度
❖ 目标的边框(BoundingBox)
中心点3D坐标,长宽高,旋转角度
❖目标的其它信息
速度,加速度等
算法
❖ 点云表示:点视图,俯视图,前视图

1.2 点云数据库

    如下表所示:常见的点云数据库由KITTI、NuScenes、WOD等数据库。
自动驾驶感知——激光雷达物体检测算法

1.3 激光雷达物体检测算法

    为了直观,先将激光雷达物体检测的一些常用算法列出。

算法类别 算法
点视图 PointNet/PointNet++,Point-RCNN,3D-SSD
俯视图 VoxelNet,SECOND,PIXOR,AFDet
前视图 LaserNet,RangeDet
多视图融合 (俯视图+点视图) PointPillar,SIENet,PV-CNN
多视图融合(俯视图+前视图) MV3D,RSN

1.3.1 点视图

1.3.1.1 PointNet

Qi et al., Pointnet: Deep learning on point sets for 3d classification and segmentation, 2017.
论文地址:https://arxiv.org/pdf/1612.00593.pdf

    PointNet有以下的用法:

  • 识别/分类(Classification):对于给定的一帧点云,判断该 点云中物体所属的种类。

  • 分割(segmentation):对于给定的一帧点云,将点云分成 若干个特定的、具有独特性质的区域。

自动驾驶感知——激光雷达物体检测算法

核心思路:点云特征提取

  • MLP(多个全连接层)提取点特征:n个点,特征由3维提升到1024维
  • MaxPooling得到全局特征:1024维

端对端学习,对点云进行分类/语义分割
物体检测:Clustering得到候选 + PointNet分类

自动驾驶感知——激光雷达物体检测算法

1.3.1.2 PointNet++

Qi et al., Pointnet++: Deep hierarchical feature learning on point sets in a metric space, 2017.

论文地址:https://papers.nips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf

在物体检测方向进行扩展:Clustering+PointNet

  • 用聚类的方式来产生多个候选点集,每个候选点集采用PointNet来提取点的特征
  • 上述过程重复多次:上一层的点集经过全局特征提取后看作下一层的点(Set Abstraction,SA)
  • 点特征具有较大的感受野,包含周围环境的上下文信息

自动驾驶感知——激光雷达物体检测算法

PointNet和PointNet++中存在的问题

  • 无法利用视觉领域成熟的检测框架,比如Faster-RCNN,YOLO等
  • Clustering部分的计算复杂度较高,而且难以并行处理
  • 两个改进方法:Point-RCNN和3D-SSD
1.3.1.3 Point-RCNN

Shi et al., PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, 2018

论文地址:https://arxiv.org/pdf/1812.04244.pdf

    PointRCNN是一个两步式目标检测网络,该网络第一步进行前景点分割,找出点云中所有的目标点;第二步利用前景点回归目标的准确边界框。该网络同时兼顾了检测的准确(AP@0.7=75.6%)与实时性(10FPS)。

点处理 + Faster RCNN

  • PointNet++提取点特征,同时进行前景分割,以区分物体点和背景点
  • 每个前景点生成一个3D候选框(PointNet++采用聚类生成候选)
  • 对每个候选框内的点进行Pooling,最后输出候选框所属的类别,修正其位置和大小

运行速度瓶颈++中的Feature Propagation

  • PointNet++需要将点集特征映射回原始点云(Feature Propagation), 因为聚类生成的点集无法很好的覆盖所有物体
  • 全局搜索属于每个物体候选的点

自动驾驶感知——激光雷达物体检测算法

1.3.1.4 3D-SSD

Yang et al., 3dssd: Point-based 3d single stage object detector, 2020
论文地址:https://arxiv.org/pdf/2002.10187.pdf

提高聚类质量

  • 同时考虑点与点之间在几何和特征空间的相似度
  • 聚类的输出可以直接用来生成物体候选

避免重复计算

  • 聚类算法输出每个cluster的中心和邻域点
  • 避免全局搜索物体候选和点之间的匹配关系

自动驾驶感知——激光雷达物体检测算法

1.3.1.5 总结和对比

❖ PointNet++的主要问题在于运行速度太慢
❖ 速度的瓶颈在于聚类过程中需要将点集特征映射回原始点云
❖ Point RCNN和3D-SSD的改进主要在于提高运行速度

自动驾驶感知——激光雷达物体检测算法

1.3.2 俯视图

1.3.2.1 VoxelNet

Zhou and Tuzel, Voxelnet: End-to-end learning for point cloud based 3d object detection, 2018

论文地址:https://arxiv.org/pdf/1711.06396.pdf

核心点

  • 特征学习网络(Feature Learning Network)
  • 3D卷积网络 (Convolutional Middle Layers)
  • 区域候选网络(Region Proposal Network)

自动驾驶感知——激光雷达物体检测算法
自动驾驶感知——激光雷达物体检测算法

VoxelNet中存在的问题
❖ 数据表示低效,大量空白区域

  • KITTI数据库一般生成5K-8K个Voxel,只有0.5%的Voxel是非空的
  • 改进方法:SECOND(采用稀疏卷积)

❖ 三维卷积计算量巨大

  • 改进方法:PIXOR(3D网格压缩到2D)
1.3.2.2 SECOND

Yan et al., Second: Sparsely embedded convolutional detection, Sensors, 2018.

论文地址:https://www.mdpi.com/1424-8220/18/10/3337

稀疏卷积避免无效计算

  • 中间层采用稀疏卷积
  • 其余模块与VoxelNet类似

自动驾驶感知——激光雷达物体检测算法

1.3.2.3 PIXOR

Yang et al., Pixor: Real-time 3d object detection from point clouds, CVPR, 2018

论文地址:https://arxiv.org/pdf/1902.06326.pdf

PIXOR (ORiented 3D object detection from PIXel-wise neural network predictions)
❖ 手工设计高度维度的特征
❖ 3D->2D:高度维度变成特征通道
❖ 可以用2D卷积来提取特征
自动驾驶感知——激光雷达物体检测算法

  • Occupancy:L x W x H(H维度作为特征通道)
  • Intensity:L x W x 1(H方向压缩为1维)
  • In totalLxWx (H+1)
1.3.2.4 AFDet

Ge et al., Real-Time Anchor-Free Single-Stage 3D Detection with IoU-Awareness, 2021
论文地址:https://arxiv.org/pdf/2006.12671.pdf

❖ 单阶段,无Anchor
❖ Waymo 3D物体检测 2021年度的获胜算法
❖ 算法方面的改进

  • 轻量级的点云特征提取
  • 扩大神经网络的感受野
  • 额外的预测分支

自动驾驶感知——激光雷达物体检测算法

1.3.2.5 总结与对比

❖ 俯视图

  • 输入结构化数据,网络结构简单
  • 对量化参数敏感:粗网格导致较大的信息损失,细网格导致较大的计算量 和内存使用量

❖ 点视图

  • 没有量化损失,数据比较紧致
  • 输入非结构化数据,网络结构复杂,并行处理困难,提取邻域特征困难

自动驾驶感知——激光雷达物体检测算法

1.3.3 前视图

前视图的特点
❖ 优点

  • 表示更为紧致,而且没有量化损失
  • 每个像素上理论上都会有数据

❖ 问题

  • 不同距离的物体尺度差别很大
  • 2D特征与3D物体信息存在不一致性
1.3.3.1 LaserNet

Meyer et al., LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving, 2019.
论文地址:https://arxiv.org/pdf/1903.08701.pdf

❖ 输入数据为多通道的前视图图像
❖ 卷积和下采样提取多尺度特征
❖ 每个像素都预测物体边框的分布(均值和方差)
❖ MeanShift聚类+NMS得到最终的输出

自动驾驶感知——激光雷达物体检测算法

1.3.3.2 RangeDet

Fan et al., RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection, 2021

论文地址:https://arxiv.org/pdf/2103.10039.pdf

核心点:

❖ Meta-Kernel Convolution
❖ Range Conditioned Pyramid

自动驾驶感知——激光雷达物体检测算法
自动驾驶感知——激光雷达物体检测算法

1.3.4 多视图融合 (俯视图+点视图)

❖ 基本思路

  • 在较低分辨率的Voxel上提取邻域特征或者生成物体候选
  • 在原始点云上提取点特征,忽略空白区域,保持空间分辨率
  • Voxel特征与点特征结合

❖ 代表性方法

  • PointPillar
  • PV-CNN
  • SIENet
1.3.4.1 PointPillar

Lang et al., PointPillars: Fast Encoders for Object Detection from Point Clouds, 2019.

论文地址:https://openaccess.thecvf.com/content_CVPR_2019/papers/Lang_PointPillars_Fast_Encoders_for_Object_Detection_From_Point_Clouds_CVPR_2019_paper.pdf

❖ 特征: PointNet提取点特征(点视图),然后进行Voxel量化(俯视图)
❖ 主干:Feature Pyramid Network
❖ 检测头:SSD

自动驾驶感知——激光雷达物体检测算法

1.3.4.2 SIENet

Li et al., SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud, 2021.
论文地址:https://arxiv.org/pdf/2103.15396.pdf

❖ 融合策略与PV-CNN相似
❖ 解决远处物体点云相对稀疏的问题

  • 采用了一个附加分支,将物体候选框中的点集进行扩展

自动驾驶感知——激光雷达物体检测算法

1.3.4.3 PV-CNN

Liu et al., Point-voxel CNN for efficient 3d deep learning, 2019.
论文地址:https://arxiv.org/pdf/1907.03739.pdf

❖Voxel分支:低分辨率的Voxel提取邻域特征,然后映射回每个点上
❖Point分支:利用MLP来提取点特征,没有量化损失,也避免空白区域的计算
❖两个分支的特征合并用于后续的物体检测

自动驾驶感知——激光雷达物体检测算法

1.3.5 多视图融合(俯视图+前视图)

❖ 基本思路

  • 融合俯视图和前视图下的特征
  • 尽量避免空白区域的无效计算

❖ 代表性方法

  • MV3D
  • Range Sparse Net (RSN)
1.3.5.1 MV3D

Chen, et al., Multi-view 3d object detection network for autonomous driving, 2017
论文地址:https://openaccess.thecvf.com/content_cvpr_2017/papers/Chen_Multi-View_3D_Object_CVPR_2017_paper.pdf

❖ BEV网格生成3D物体候选,再转换为不同视图下的候选
❖ 不同候选中进行ROI-Pooling
❖ 在候选层级上融合不同视图的特征

自动驾驶感知——激光雷达物体检测算法

1.3.5.2 RSN

Sun, et al., RSN: Range Sparse Net for Efficient, Accurate LiDAR 3D Object Detection, 2021.
论文地址:https://arxiv.org/pdf/2106.13365.pdf

自动驾驶感知——激光雷达物体检测算法

两阶段检测器,目的在于提高检测距离的可扩展性

  • 阶段1:前视图上进行前景分割,过滤背景点
  • 阶段2:前景点量化为Voxel,稀疏卷积提取特征,稀疏的Grid上检测物体
  • 稠密的前视图+稀疏的俯视图

声明

本人所有文章仅作为自己的学习记录,若有侵权,联系立删。本系列文章主要参考了清华大学、北京理工大学、哈尔滨工业大学、深蓝学院、百度Apollo等相关课程。文章来源地址https://www.toymoban.com/news/detail-456263.html

到了这里,关于自动驾驶感知——激光雷达物体检测算法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 传感器融合 | 适用于自动驾驶场景的激光雷达传感器融合项目_将激光雷达的高分辨率成像+测量物体速度的能力相结合

    项目应用场景 面向自动驾驶场景的激光雷达传感器融合,将激光雷达的高分辨率成像+测量物体速度的能力相结合,项目是一个从多个传感器获取数据并将其组合起来的过程,可以更加好地进行环境感知。项目支持 ubuntu、mac 和 windows 平台。 项目效果 项目细节 == 具体参见项目

    2024年04月24日
    浏览(34)
  • Apollo官方课程算法解读笔记——激光雷达感知模块、基于PointPillars的激光雷达点云检测算法、PointPillars模型的部署和优化模型的部署和优化

    感知模块检测效果: 左边为摄像头拍摄图像,激光雷达感知不依赖左边CAMERA,而是点云数据对应的效果图(黄色上方数字为Tracking ID) 主车红灯时的激光点云检测效果图 车道线给CAMERA提供一个标定参考,使得camera检测出来的障碍物从2维转化为3维的信息,因为此标定的参考,

    2024年02月14日
    浏览(32)
  • 自动驾驶环境感知之基于深度学习的毫米波雷达感知算法

    (1)基本的数据形式 ADC(数模转换)数据块:由Chirp采样N、每帧内Chirp个数M和天线K组成的三维数据块的中频信号 Range-Azimuth-Doppler数据块:将中频信号数据块分别在距离、速度、角度三个维度上进行FFT操作,得到距离-角度-速度表征的RAD数据块。其中,角度是指水平方向的旋

    2024年01月25日
    浏览(39)
  • 自动驾驶二维激光雷达标定板

    自动驾驶是人类智慧的结晶,它融合了多种高科技技术,包括传感器技术、计算机视觉、人工智能等,它让汽车具备了自主感知和决策的能力,可以在复杂多变的道路环境中自如应对。这种技术带给我们的不仅仅是出行的便利,更是对未来生活的美好憧憬。 在自动驾驶汽车中

    2024年01月20日
    浏览(34)
  • 自动驾驶专题介绍 ———— 激光雷达标定

     激光雷达在感知、定位方面发挥着重要作用。跟摄像头一样,激光雷达也是需要进行内外参数标定的。内参标定是指内部激光发射器坐标系与雷达自身坐标系的转换关系,在出厂之前就已经完成了标定,可以直接使用。自动驾驶系统需要进行的是外参的标定,即激光雷达自

    2024年02月08日
    浏览(34)
  • 自动驾驶感知系统-超声波雷达

    超声波雷达,是通过发射并接收40kHz的超声波,根据时间差算出障碍物距离。其测距精度是1~3cm.常见的超声波雷达有两种:第一种是安装在汽车前后保险杠上的,用于测量汽车前后障碍物的驻车雷达或倒车雷达,称为超声波驻车辅助传感器(Ultrasonic Parking Assistant, UPA);第二种

    2024年02月16日
    浏览(30)
  • 【Apollo】自动驾驶感知——毫米波雷达

    作者简介: 辭七七,目前大一,正在学习C/C++,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖💖 本文用于投稿于星火培训:报名链接 毫米波雷达分类毫米波雷达的信号频段毫米波雷达工作原理车载毫米波雷达

    2024年02月12日
    浏览(42)
  • 计算机视觉 激光雷达结合无监督学习进行物体检测的工作原理

            激光雷达是目前正在改变世界的传感器。它集成在自动驾驶汽车、自主无人机、机器人、卫星、火箭等中。该传感器使用激光束了解世界,并测量激光击中目标返回所需的时间,输出是点云信息,利用这些信息,我们可以从3D点云中查找障碍物。         从自

    2024年02月07日
    浏览(40)
  • 深入浅出讲解自动驾驶 - 激光雷达原理和结构简介

    💂 个人主页 : 同学来啦 🤟 版权 : 本文由【同学来啦】原创、在CSDN首发、需要转载请联系博主 💬 如果文章对你有帮助, 欢迎关注、点赞、收藏和订阅专栏哦 激光雷达最先应用于海洋深度探测领域,其实现思路是通过相同回波之间的时间差实现海洋深度测算。后来不断演

    2024年02月16日
    浏览(36)
  • 【论文阅读】你看不见我:对基于激光雷达的自动驾驶汽车驾驶框架的物理移除攻击

    自动驾驶汽车(AVs)越来越多地使用基于激光雷达的物体检测系统来感知道路上的其他车辆和行人。目前,针对基于激光雷达的自动驾驶架构的攻击主要集中在降低自动驾驶物体检测模型的置信度,以诱导障碍物误检测,而我们的研究发现了如何利用基于激光的欺骗技术,在传

    2024年02月11日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包