flink1.14 sql基础语法(一) flink sql表查询详解

这篇具有很好参考价值的文章主要介绍了flink1.14 sql基础语法(一) flink sql表查询详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

flink sql表查询详解

1、高阶聚合

group by cube(维度1, 维度2, 维度3)

group by grouping sets( (维度1,维度2),(维度1,维度3),() )

group by rollup(,,)

语法示例:

select 
  privince,
  city,
  region,
  count(distinct uid) as u_cnt
from t 
group by cube(province,city,region)


select 
  privince,
  city,
  region,
  count(distinct uid) as u_cnt
from t 
group by rollup(province,city,region)



select 
  privince,
  city,
  region,
  count(distinct uid) as u_cnt
from t 
group by grouping sets( (province,city), (province,city,region) )

2、时间窗口 TVF(表值函数)

flink从1.13开始,提供了时间窗口聚合计算的TVF语法。

表值函数的使用约束:

  • (1)在窗口上做分组聚合,必须带上window_start 和 window_end 作为分组的key;
  • (2)在窗口上做topn计算,必须带上window_start 和 window_end 作为partition的key;
  • (3)带条件的join,必须包含2个输入表的window_start 和 window_end 等值条件。
select 
  ......
from table(
  tumble (table t ,descriptor(rt),interval '10' minutes) 
)

(1) 支持的时间窗口类型

1、滚动窗口(Tumble Windows)

TUMBLE (TABLE t_action,descriptor(时间属性字段),INTERVAL '10' SECOND[ 窗口长度 ] )

2、滑动窗口(Hop Windows)

HOP (TABLE t_action,descriptor(时间属性字段),INTERVAL '5' SECONDS[ 滑动步长 ] , INTERVAL '10' SECOND[ 窗口长度 ] )

3、累计窗口(Cumulate Windows)

CUMULATE (TABLE t_action,descriptor(时间属性字段),INTERVAL '5' SECONDS[ 更新最大步长 ] , INTERVAL '10' SECOND[ 窗口最大长度 ] )

4、会话窗口(Session Windows)
暂不支持!

(2) 语法示例

select 
  window_start,
  window_end,
  channel,
  count(distinct guid) as uv
from table (
  tumble(table t_applog,descriptor(rt),interval '5' minute ) --滚动窗口 
)
group by window_start,window_end,channel

3、窗口topn

-- bidtime,price,item,supplier_id
2020-04-15 08:05:00.000,4.00,C,supplier1
2020-04-15 08:07:00.000,2.00,A,supplier1
2020-04-15 08:09:00.000,5.00,D,supplier2
2020-04-15 08:11:00.000,3.00,B,supplier2
2020-04-15 08:09:00.000,5.00,D,supplier3
2020-04-15 08:11:00.000,6.00,B,supplier3
2020-04-15 08:11:00.000,6.00,B,supplier3
/**
 * 10分钟滚动窗口中的交易金额最大的前2笔订单
 */
public class _02_Window_Topn_V2 {
    public static void main(String[] args)  {

        // 创建表的执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

        // 从kafka中读取数据
        String sourceTable = "CREATE TABLE source_table (\n" +
                "  bidtime string ,\n" +
                "  `price` double,\n" +
                "  `item` STRING,\n" +
                "  `supplier_id` STRING,\n" +
                "  `rt` as cast( bidtime as timestamp(3) ),\n" +
                "   watermark for rt as rt - interval '5' second\n" +
                ") WITH (\n" +
                "  'connector' = 'kafka',\n" +
                "  'topic' = 'topn1',\n" +
                "  'properties.bootstrap.servers' = 'hadoop01:9092',\n" +
                "  'properties.group.id' = 'testGroup',\n" +
                "  'scan.startup.mode' = 'earliest-offset',\n" +
                "  'format' = 'csv'\n" +
                ")";


        tenv.executeSql(sourceTable);
        // 10分钟滚动窗口中的交易金额最大的前2笔订单
        tenv.executeSql("select\n" +
                "  *\n" +
                "from(\n" +
                "  select window_start,window_end, \n" +
                "    bidtime,\n" +
                "    price,\n" +
                "    item,\n" +
                "    supplier_id,\n" +
                "    row_number() over(partition by window_start,window_end order by price desc ) as rn\n" +
                "  from table(\n" +
                "    tumble(table source_table,descriptor(rt),interval '10' minute)\n" +
                "  ) \n" +
                ") t1 where rn <= 2 ").print();
    }
}

## 结果如下
+----+-------------------------+-------------------------+-------------------------+-------+---------+--------------+-------+
| op |            window_start |              window_end |                 bidtime | price |    item |  supplier_id |    rn |
+----+-------------------------+-------------------------+-------------------------+-------+---------+--------------+-------+
| +I | 2020-04-15 08:00:00.000 | 2020-04-15 08:10:00.000 | 2020-04-15 08:09:00.000 |   5.0 |       D |    supplier3 |     1 |
| +I | 2020-04-15 08:00:00.000 | 2020-04-15 08:10:00.000 | 2020-04-15 08:09:00.000 |   5.0 |       D |    supplier2 |     2 |
/**
 *
 * 10分钟滚动窗口内交易总额最高的前两家供应商,及其交易总额和交易单数
 */
public class _02_Window_Topn_V3 {
    public static void main(String[] args)  {

        // 创建表的执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

        // 从kafka中读取数据
        String sourceTable = "CREATE TABLE source_table (\n" +
                "  bidtime string ,\n" +
                "  `price` double,\n" +
                "  `item` STRING,\n" +
                "  `supplier_id` STRING,\n" +
                "  `rt` as cast( bidtime as timestamp(3) ),\n" +
                "   watermark for rt as rt - interval '5' second\n" +
                ") WITH (\n" +
                "  'connector' = 'kafka',\n" +
                "  'topic' = 'topn1',\n" +
                "  'properties.bootstrap.servers' = 'hadoop01:9092',\n" +
                "  'properties.group.id' = 'testGroup',\n" +
                "  'scan.startup.mode' = 'earliest-offset',\n" +
                "  'format' = 'csv'\n" +
                ")";
        
        tenv.executeSql(sourceTable);
        // 10分钟滚动窗口内交易总额最高的前两家供应商,及其交易总额和交易单数
        String executeSql = "select\n" +
                "  *\n" +
                "from(\n" +
                "  select\n" +
                "   window_start,\n" +
                "   window_end,\n" +
                "   supplier_id,\n" +
                "   sum_price,\n" +
                "   cnt,\n" +
                "   row_number() over(partition by window_start,window_end order by sum_price desc ) as rn \n" +
                "   from(\n" +
                "      select\n" +
                "        window_start,\n" +
                "        window_end,\n" +
                "        supplier_id,\n" +
                "        sum(price) as sum_price,\n" +
                "        count(1) as cnt\n" +
                "      from table(\n" +
                "        tumble(table source_table,descriptor(rt),interval '10' minute)\n" +
                "      ) group by window_start,window_end,supplier_id\n" +
                "  ) t1\n" +
                ") t1 where rn <= 2";

        tenv.executeSql(executeSql).print();
        
    }
}

4、window join查询

语法:

  • 在TVF上使用join
  • 参与join 的两个表都需要定义时间窗口
  • join 的条件中必须包含两表的window_start和 window_end的等值条件

支持join的方式:

  • inner/left/right/full
  • semi(where id in …)
  • anti(where id not in …)

代码示例:

/**
 * 各种窗口的join代码示例
 */
public class _03_Join {
    public static void main(String[] args) {
        // 创建表的执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);

        /**
         * 1,a,1000
         * 2,b,2000
         * 3,c,2500
         * 4,d,3000
         * 5,e,12000
         */
        // 从socket流中读取数据
        DataStreamSource<String> s1 = env.socketTextStream("hadoop01", 9999);
        SingleOutputStreamOperator<Tuple3<String, String, Long>> ss1 = s1.map(new MapFunction<String, Tuple3<String, String, Long>>() {
            @Override
            public Tuple3<String, String, Long> map(String line) throws Exception {
                String[] arr = line.split(",");
                return Tuple3.of(arr[0], arr[1], Long.parseLong(arr[2]));
            }
        });

        /**
         * 1,bj,1000
         * 2,sh,2000
         * 4,xa,2600
         * 5,yn,12000
         */
        DataStreamSource<String> s2 = env.socketTextStream("hadoop01", 9998);
        SingleOutputStreamOperator<Tuple3<String, String, Long>> ss2 = s2.map(new MapFunction<String, Tuple3<String, String, Long>>() {
            @Override
            public Tuple3<String, String, Long> map(String line) throws Exception {
                String[] arr = line.split(",");
                return Tuple3.of(arr[0], arr[1], Long.parseLong(arr[2]));
            }
        });

        // 创建两个表
        tenv.createTemporaryView("t_left",ss1,
                Schema.newBuilder()
                .column("f0", DataTypes.STRING())
                .column("f1", DataTypes.STRING())
                .column("f2", DataTypes.BIGINT())
                .columnByExpression("rt"," to_timestamp_ltz(f2,3) ")
                .watermark("rt","rt - interval '0' second ")
                .build()
        );

        tenv.createTemporaryView("t_right",ss2,
                Schema.newBuilder()
                        .column("f0", DataTypes.STRING())
                        .column("f1", DataTypes.STRING())
                        .column("f2", DataTypes.BIGINT())
                        .columnByExpression("rt"," to_timestamp_ltz(f2,3) ") // 指定事件时间
                        .watermark("rt","rt - interval '0' second ") // 指定水位线
                        .build()
        );

        // 各种窗口join的示例
        // INNER JOIN
        String innerJoinSql = "select\n" +
                "  a.f0,\n" +
                "  a.f1,\n" +
                "  a.f2,\n" +
                "  b.f0,\n" +
                "  b.f1\n" +
                "from\n" +
                "( select * from table( tumble(table t_left,descriptor(rt), interval '10' second) )  ) a\n" +
                "join\n" +
                "( select * from table( tumble(table t_right,descriptor(rt), interval '10' second) )  ) b\n" +
                // 带条件的join,必须包含2个输入表的window_start 和 window_end 等值条件
                "on a.window_start = b.window_start and a.window_end = b.window_end and a.f0 = b.f0";

//        tenv.executeSql(innerJoinSql).print();
        // left / right / full outer
        String fullJoinSql = "select\n" +
                "  a.f0,\n" +
                "  a.f1,\n" +
                "  a.f2,\n" +
                "  b.f0,\n" +
                "  b.f1\n" +
                "from\n" +
                "( select * from table( tumble(table t_left,descriptor(rt), interval '10' second) )  ) a\n" +
                "full join\n" +
                "( select * from table( tumble(table t_right,descriptor(rt), interval '10' second) )  ) b\n" +
                // 带条件的join,必须包含2个输入表的window_start 和 window_end 等值条件
                "on a.window_start = b.window_start and a.window_end = b.window_end and a.f0 = b.f0";

//        tenv.executeSql(fullJoinSql).print();

        // semi ==> where ... in ...
        String semiJoinSql = "select\n" +
                "  a.f0,\n" +
                "  a.f1,\n" +
                "  a.f2,\n" +
                "from\n" +
                "-- 1、在TVF上使用join\n" +
                "-- 2、参与join 的两个表都需要定义时间窗口\n" +
                "( select * from table( tumble(table t_left,decriptor(rt), interval '10' second) ) ) a\n" +
                "where f0 in\n" +
                "(\n" +
                "  select\n" +
                "    f0\n" +
                "  from\n" +
                "  ( select * from table( tumble(table t_right,decriptor(rt), interval '10' second) ) ) b\n" +
                "  -- 3、join 的条件中必须包含两表的window_start和 window_end的等值条件\n" +
                "  where a.window_start = b.window_start and a.window_end = b.window_end\n" +
                ")";

        //        tenv.executeSql(semiJoinSql).print();
    }
}

5、flink sql中的join分类

flink1.14 sql基础语法(一) flink sql表查询详解

(1)regular join

常规join,flink底层是会对两个参与join的输入流中的数据进行状态存储的;所以,随着时间的推进,状态中的数据量会持续膨胀,可能会导致过于庞大,从而降低系统的整体效率;
可以如何去缓解:

自己根据自己业务系统数据特性(估算能产生关联的左表数据和右表数据到达的最大时间差),根据这个最大时间差,去设置ttl 时长;

StreamTableEnvironment tenv = StreamTableEnvironmentcreate(env);// 设置table环境中的状态tt时长
tenv.getConfig().getConfiguration().setLong("table.exec.state.ttl",60*60*1000L);

(2)Lookup join(维表join)

Lookup join跟其它的join有较大的不同,在 flinksql 中,所有的 source connector都实现自DynamicTableSource。

flink1.14 sql基础语法(一) flink sql表查询详解

  • ScanTableSource是用的最多的常规TableSource,它会持续、完整读取源表,形成flink中的核心数据抽象—“数据流";

  • LookupTableSource,则并不对源表持续、完整读取,而是在需要的时候,才根据一个(或多个)查询key,去临时性地查询源表得到一条(或多条)数据;

lookup join为了提高性能,lookup的连接器会将查询过的维表数据进行缓存(默认未开启此机制),可以通过参数开启,比如 jdbc-connector 的 lookup模式下,有如下参数:

  • lookup.cache.max-rows= (none) 未开启
  • lookup.cache.ttl = (none) ttl缓存清除的时长
public class JdbcDynamicTableSource 
                    implements ScanTableSource,
                               LookupTableSource, 
                               SupportsProjectionPushDown, 
                               SupportsLimitPushDown {

它实现了上述两种接口,因而它是两种读取模式的混合封装体因而,它也实现了上述两个接口中各自的一个重要方法:

  • getLookupRuntimeProvider
  • getScanRuntimeProvider

对于lookupRuntimeProvider 来说,最重要的是其中的: JdbcRowDataLookupFunction

// lookup Function中最重要的就是eval方法    
public void eval(Object... keys) {
        RowData keyRow = GenericRowData.of(keys);
        if (this.cache != null) {
            List<RowData> cachedRows = (List)this.cache.getIfPresent(keyRow);
            // 对于传入的keys,先从缓存中获取要查询的数据
            if (cachedRows != null) {
                Iterator var24 = cachedRows.iterator();
                while(var24.hasNext()) {
                    RowData cachedRow = (RowData)var24.next();
                    // 如果缓存中拿到了数据,就直接输出
                    this.collect(cachedRow);
                }
                return;
            }
        }

        int retry = 0;
        // 否则,用jdbc去进行查询
        while(retry <= this.maxRetryTimes) {
            try {
                // 构建jdbc查询语句statement
                this.statement.clearParameters();
                this.statement = this.lookupKeyRowConverter.toExternal(keyRow, this.statement);
                // 执行查询语句,并获取resultSet
                ResultSet resultSet = this.statement.executeQuery();
                Throwable var5 = null;

                try {
                    if (this.cache == null) {
                        while(resultSet.next()) {
                            this.collect(this.jdbcRowConverter.toInternal(resultSet));
                        }

                        return;
                    }

                    ArrayList rows = new ArrayList();
                    // 迭代resultSet
                    while(resultSet.next()) {
                        // 转成内部数据类型RowData
                        RowData row = this.jdbcRowConverter.toInternal(resultSet);
                        // 将数据装入到一个list后一次性输出
                        rows.add(row);
                        this.collect(row);
                    }
                    // 将查询到的数据,放入到缓存中
                    rows.trimToSize();
                    this.cache.put(keyRow, rows);
                    break;
                } catch (Throwable var20) {
                    var5 = var20;
                    throw var20;
                } finally {
                  ...
                }
            } catch (SQLException var22) {
               ...
            }
        }
    }

look up join的实例:

public class _04_LookUpJoin {
    public static void main(String[] args) throws Exception {
        // 创建flink sql的执行环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        StreamTableEnvironment tenv = StreamTableEnvironment.create(env);
        // 设置table环境中的状态时长ttl
        tenv.getConfig().getConfiguration().setLong("table.exec.state.ttl",60 * 60 * 1000L);

        /**
         * 1,a
         * 2,b
         * 3,c
         * 4,d
         * 5,e
         */
        SingleOutputStreamOperator<Tuple2<Integer, String>> ss1 = env.socketTextStream("hadoop01", 9999)
                .map(new MapFunction<String, Tuple2<Integer, String>>() {
                    @Override
                    public Tuple2<Integer, String> map(String line) throws Exception {
                        String[] arr = line.split(",");
                        return Tuple2.of(Integer.parseInt(arr[0]), arr[1]);
                    }
                });
        
        // 创建主表(需要声明处理时间属性字段)
        tenv.createTemporaryView("a",ss1, Schema.newBuilder()
                .column("f0", DataTypes.INT())
                .column("f1", DataTypes.STRING())
                .columnByExpression("pt","proctime()") // 定义处理时间属性字段
                .build());

        // 创建lookup 维表(jdbc connector表)
        String lookUpSql = "-- register a MySQL table 'users' in Flink SQL\n" +
                "CREATE TABLE b (\n" +
                "  id int,\n" +
                "  name STRING,\n" +
                "  gender STRING,\n" +
                "  PRIMARY KEY (id) NOT ENFORCED\n" +
                ") WITH (\n" +
                "   'connector' = 'jdbc',\n" +
                "   'url' = 'jdbc:mysql://localhost:3306/ycak',\n" +
                "   'table-name' = 'users',\n" +
                "   'username' = 'root',\n" +
                "   'password' = 'zsd123456'\n" +
                ")";

        tenv.executeSql(lookUpSql);

        // lookup join查询
        String lookupSelectSql = "select\n" +
                "  a.*,\n" +
                "  c.*\n" +
                "from \n" +
                "  a join b FOR SYSTEM_TIME AS OF a.pt as c\n" +
                "on a.f0 = c.id";
        tenv.executeSql(lookupSelectSql).print();

        env.execute();
    }
}

(3)Interval join

nterval Join:流与流的 Join,两条流一段时间区间内的 Join。Interval Join 可以让一条流去 Join 另一条流中前后一段时间内的数据

Regular Join 会产生回撤流,但是在实时数仓中一般写入的 sink 都是类似于 Kafka 这样的消息队列,然后后面接 clickhouse 等引擎,这些引擎又不具备处理回撤流的能力。 Interval Join 就是用于消灭回撤流的。

实际案例:曝光日志关联点击日志筛选既有曝光又有点击的数据,条件是曝光之后发生 4 小时之内的点击,并且补充点击的扩展参数(show inner interval click)

INSERT INTO sink_table
SELECT
    show_log_table.log_id as s_id,
    show_log_table.show_params as s_params,
    click_log_table.log_id as c_id,
    click_log_table.click_params as c_params
FROM show_log_table 
INNER JOIN click_log_table ON show_log_table.log_id = click_log_table.log_id
AND show_log_table.row_time BETWEEN click_log_table.row_time - INTERVAL '4' HOUR AND click_log_table.row_time;

时间区间条件的可用语法:

  • l_time = r_time
  • l_time >= r_time AND l_time < + INTERVAL '10' MINUTE
  • l_time BETWEEN r_time - INTERVAL '10' SECOND AND r_time + INTERVAL '5' SECOND

(4)temporal join(时态join/版本join)

左表的数据永远去关联右表数据的对应时间上的最新版本

-- 有如下交易订单表(订单id,金额,货币,时间)
1,88,e,1000
2,88,e,2000
3,68,e,3000

-- 有如下汇率表(货币,汇率,更新时间)
e,1.0,1000
e,2.0,3000


-- temporal join的结果如下
1,88,e,1000,1.0
2,88,e,2000,1.0
3,68,e,3000,2.0
-- 创建表orders
-- append-only表
create table orders(
  order_id STRING,
  price decimal(32,2),
  currency STRING,
  order_time TIMESTAMP(3),
  watermark for order_time as  order_time
)with (/*...*/)

-- 创建汇率表,比如从cdc过来的表
create table currency_rates(
  currency STRING,
  conversion_rate decimal(32,2),
  update_time TIMESTAMP(3) METADATA from 'values.source.timestamp' VIRTUAL,
  watermark for update_time as  update_time,
  PRIMARY KEY (currency) NOT ENFORCED
)with (
'connector' = 'kafka',
'value.format' = 'debezium-json',
/*...*/
)


SELECT
    order_id,
    price,
    currency,
    conversion_rate,
    order_time
FROM orders
LEFT JOIN currency_rates FOR SYSTEM_TIMEAS OF orders.order_time 
ON orders.currency = currency_rates.currency;

(5)窗口聚合

row_number() over ()

flinksql中,over聚合时,指定聚合数据区间有两种方式
方式1,带时间设定区间
RANGE BETWEEN INTERVAL '30'MINUTE PRECEDING AND CURRENT ROW
方式2,按行设定区间
ROWS BETWEEN 10 PRECEDING AND CURRENT ROW

SELECT 
  order_id, 
  order_time, 
  amount,
  SUM(amount) OVER( PARTITION BY productORDER BY order_time RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW ) AS one_hour_prod_amount_sum
FROM Orders

over window可以单独定义并重复使用,从而简化代码文章来源地址https://www.toymoban.com/news/detail-456289.html


SELECT 
  order_id, 
  order_time, 
  amount,
  SUM(amount) OVER w AS sum_amount,
  AVG(amount) OVER w AS avg_amount 
  FROM Orders

WINDOW w AS (
PARTITION BY product ORDER BY order_time RANGE BETWEEN INTERVAL '1' HOUR PRECEDING AND CURRENT ROW )

到了这里,关于flink1.14 sql基础语法(一) flink sql表查询详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【SQL刷题】Day2----SQL语法基础查询

    Day2----SQL语法基础查询 博主昵称:跳楼梯企鹅 博主主页面链接:博主主页传送门 博主专栏页面连接:专栏传送门--网路安全技术 创作初心:本博客的初心为与技术朋友们相互交流,每个人的技术都存在短板,博主也是一样,虚心求教,希望各位技术友给予指导。 博主座右铭

    2023年04月08日
    浏览(37)
  • Flink1.14提交任务报错classloader.check-leaked-classloader问题解决

    我的hadoop版本是3.1.3,Flink版本是1.14。不知道是hadoop版本的原因还是Flink版本更新的原因。当我运行一个简单的Flink测试时,虽然结果出来了但是后面还跟着一段报错信息。 测试命令: flink run -m yarn-cluster -p 2 -yjm 2G -ytm 2G $FLINK_HOME/examples/batch/WordCount.jar 报错信息: Trying to acce

    2024年02月11日
    浏览(41)
  • 使用Flink1.16.0的SQLGateway迁移Hive SQL任务

    使用Flink的SQL Gateway迁移Hive SQL任务 我们有数万个离线任务,主要还是默认的DataPhin调度CDP集群的Hive On Tez这种低成本任务,当然也有PySpark、打Jar包的Spark和打Jar包的Flink任务这种高成本的任务【Java和Scala都有】。毕竟SQL上手门槛极低,是个人都能写几下并且跑起来,还可以很容

    2023年04月08日
    浏览(45)
  • Flink1.17 基础知识

    来源:B站尚硅谷 Flink 概述 Flink 是什么 Flink的核心目标是“ 数据流上的有状态计算 ” (Stateful Computations over Data Streams)。 具体来说:Apache Flink是一个 框架式和分布式处理引擎 ,用于对无界和有界数据流进行有 状态计算 。 Flink特点 处理数据的目标是: 低延迟、高吞吐、结

    2024年01月25日
    浏览(114)
  • 实时数仓|基于Flink1.11的SQL构建实时数仓探索实践

    实时数仓主要是为了解决传统数仓数据时效性低的问题,实时数仓通常会用在实时的 OLAP 分析、实时的数据看板、业务指标实时监控等场景。虽然关于实时数仓的架构及技术选型与传统的离线数仓会存在差异,但是关于数仓建设的基本方法论是一致的。本文会分享基于 Flink

    2024年02月16日
    浏览(48)
  • flink1.18.0 macos sql-client.sh启动报错

    2024年01月23日
    浏览(40)
  • Flink1.14新版KafkaSource和KafkaSink实践使用(自定义反序列化器、Topic选择器、序列化器、分区器)

    在官方文档的描述中,API FlinkKafkaConsumer和FlinkKafkaProducer将在后续版本陆续弃用、移除,所以在未来生产中有版本升级的情况下,新API KafkaSource和KafkaSink还是有必要学会使用的。下面介绍下基于新API的一些自定义类以及主程序的简单实践。 官方文档地址: https://nightlies.apache.o

    2024年01月21日
    浏览(54)
  • MySQL基础篇补充 | 多表查询中使用SQL99实现7种JOIN操作、SQL99语法新特性

    目录 一:多表查询中使用SQL99实现7种JOIN操作  二:SQL99语法新特性 1. 自然连接Natural 2. USING连接 在多表查询中,除了遇到最多的内连接、左外连接和右外连接,还有其它的连接方式;接下来就聊聊其它的连接方式,如下图:  ​​​​​​ 并且在正式讲解之前,需要先了解

    2024年02月03日
    浏览(46)
  • [flink1.14.4]Unable to create a source for reading table ‘default_catalog.default_database.new_buyer

    升级flink1.14.4报错  Caused by: org.apache.flink.table.api.ValidationException: Unable to create a source for reading table \\\'default_catalog.default_database.new_buyer_trade_order2\\\'     source表未加主键导致,注释放开,提交成功

    2024年02月15日
    浏览(49)
  • (二开)Flink 修改源码拓展 SQL 语法

    1、Flink 扩展 calcite 中的语法解析 1)定义需要的 SqlNode 节点类-以 SqlShowCatalogs 为例 a)类位置 flink/flink-table/flink-sql-parser/src/main/java/org/apache/flink/sql/parser/dql/SqlShowCatalogs.java 核心方法 : b)类血缘 2)修改 includes 目录下的 .ftl 文件,在 parserImpls.ftl 文件中添加语法逻辑 a)文件位

    2024年02月07日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包