【机器学习】采样方法

这篇具有很好参考价值的文章主要介绍了【机器学习】采样方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

采样方法

11.1 简介

  1. 什么是采样

    从一个分布中生成一批服从该分布的样本,该过程叫采样.采样本质上是对随机现象的模拟,根据给定的概率分布,来模拟产生一个对应的随机事件。采样可以让人们对随机事件及其产生过程有更直观的认识.

  2. 蒙特卡洛

    要解决的问题:寻找某个定义在概率分布𝑝(𝑧)上的函数𝑓(𝑧)的期望,即计算 E ( f ) = ∫ f ( z ) p ( z ) d z \mathbb E(f)=\int f(\mathbf z)p(\mathbf z)\mathrm d\mathbf z E(f)=f(z)p(z)dz

    对于大多数实际应用中的概率模型来说,无法精确计算其和或积分,可以采取基于数值采样的近似推断方法,也被称为蒙特卡罗(MonteCarlo)方法

    对这个问题,蒙特卡罗方法是从概率分布𝑝(𝑧)中独立抽取𝑙个样本 z ( 1 ) , z ( 2 ) , . . . , z ( l ) z^{(1)},z^{(2)},...,z^{(l)} z(1),z(2),...,z(l) ,这样期望即可通过有限和的方式计算,以此得到一个经验平均值,即计算: f ^ = 1 L ∑ l = 1 L f ( z ( l ) ) \hat{f}=\frac{1}{L}\sum_{l=1}^{L}f\bigl(\mathbf{z}^{(l)}\bigr) f^=L1l=1Lf(z(l))

    【机器学习】采样方法

11.2 常见采样方法

11.2.1 均匀分布采样

均匀分布是指整个样本空间中的每一个样本点对应的概率(密度)都是相等的;根据样本空间是否连续,又分为离散均匀分布和连续均匀分布。

一般计算机的程序都是确定性的,无法产生真正意义上的完全均匀分布的随机数,只能产生伪随机数,用线性同余法生成区间[0, m - 1]上的伪随机数序列:
x t + 1 = ( a ⋅ x t + c ) m o d    m x_{t+1}=(a\cdot x_t+c)\mod m xt+1=(axt+c)modm
其中,模 m > 0 m>0 m>0,系数 0 < a < m 0<a<m 0<a<m,增量 0 ≤ c < m 0\leq c<m 0c<m,种子 x 0 x_0 x0满足 0 ≤ x 0 < m 0\leq x_{0}<m 0x0<m

11.2.2 逆变换采样

定理:设𝑦是一个连续随机变量,概率密度函数为𝑝(𝑦) ,累计分布函数为ℎ(y) =P(𝑦) ,则𝑧 = ℎ(y) 是定义在区间0 ≤ 𝑧 ≤ 1上的均匀分布,即𝑝 (𝑧) = 1 (0 ≤ 𝑧 ≤ 1)。

证明:ℎ(y) 是累计分布函数,则0 ≤ 𝑧 = ℎ(y) ≤ 1,且ℎ(y)是单调递增函数 , z的累积分布函数:
P ( z ≤ Z ) = P ( h ( y ) ≤ Z ) = P ( y ≤ h − 1 ( Z ) ) = h ( h − 1 ( Z ) ) = Z p ( z ) = d F ( Z ) d Z = 1 ( 0 ≤ z ≤ 1 ) \begin{array}{c}\mathrm P(z\leq Z)=\mathrm P(h(y)\leq Z)=\mathrm P(y\leq h^{-1}(Z))=h(h^{-1}(Z))=Z\\\\ p(z)=\dfrac{\mathrm dF(Z)}{\mathrm dZ}=1(0\leq z\leq1)\end{array} P(zZ)=P(h(y)Z)=P(yh1(Z))=h(h1(Z))=Zp(z)=dZdF(Z)=1(0z1)

待采样的目标分布为 p ( x ) p(x) p(x),它的累计分布函数为 z = Φ ( X ) = ∫ − ∞ X p ( x ) d x \mathrm{z}=\Phi(X)=\int_{-\infty}^{X}p(x)d x z=Φ(X)=Xp(x)dx,则逆变换采样法步骤为:

  • 从均匀分布U(0,1)产生一个随机数 z i z_i zi
  • 计算逆函数 X i = Φ − 1 ( z i ) X_{i}=\Phi^{-1}(z_{i}) Xi=Φ1(zi),循环上述步骤,产生更多样本

例:

指数分布密度函数 p ( x ) = λ exp ⁡ ( − λ x ) ( 0 ≤ x < ∞ ) p(x)=\lambda\exp(-\lambda x)(0\le x<\infty) p(x)=λexp(λx)(0x<)其累计分布函数为 z = Φ ( X ) = 1 − exp ⁡ ( − λ X ) \text{z}=\Phi(X)=1-\exp(-\lambda X) z=Φ(X)=1exp(λX)

其逆变换为: X = − λ − 1 ln ⁡ ( 1 − z ) X=-\lambda^{-1}\ln(1-z) X=λ1ln(1z)

11.2.3 拒绝采样

拒绝采样,又称为接受-拒绝采样,基本思想是用一“更大的的概率分布”或“更简单的概率分布”q(z)覆盖原本的概率分布,这个更简单的概率分布容易采样 (如正态分布)

  • p ⁡ ( z ) = 1 z p p ⁡ ~ ( z ) \operatorname{p}(z)=\frac{1}{z_p}\tilde{\operatorname{p}}(z) p(z)=zp1p~(z)为采样分布, p ⁡ ~ ( z ) \tilde{\operatorname{p}}(z) p~(z)为已知分布, Z p Z_p Zp为归一化因子(这一步没看明白暂且当成一样的)
  • 引入较简单分布 q ( z ) q(z) q(z) ,称为提议分布,从中可以较容易采样
  • 引入常数k,对任意z满足 k q ( z ) ≥ p ~ ( z ) \mathrm{kq}(z)\geq\tilde{\mathrm{p}}(z) kq(z)p~(z) k q ( z ) kq(z) kq(z)称为比较函数

拒绝采样方法的步骤:

  • q ( z ) q(z) q(z)中随机采一个样本 z 0 z_0 z0
  • 生成区间 [ 0 , k q ( z 0 ) ] [0,kq(z_0)] [0,kq(z0)]上的均匀分布的一个样本 u 0 u_0 u0
  • 如果 u 0 ≥ p ~ ( z ) u_0\geq \tilde{\mathrm{p}}(z) u0p~(z),则拒绝该样本;反之接受
  • 重复以上过程得到 [ z 0 , z 1 , … z n ] \left[z_{0},z_{1},\ldots z_{n}\right] [z0,z1,zn]即是对 p ( z ) p(z) p(z)的一个近似

在上述拒绝采样方法中,𝑧的原始值从概率分布𝑞(𝑧)中生成,这些样本之后被接受的可能性为: p ~ ( z ) k q ( z ) \frac{{\tilde{p}}(z)}{k q(z)} kq(z)p~(z),因此,样本被接受的平均概率为:
p ( a c c e p t ) = ∫ { p ~ ( z ) k q ( z ) } q ( z ) d z = 1 k ∫ p ~ ( z ) d z p(\mathrm{accept})=\int\left\{\frac{\tilde{p}(z)}{kq(z)}\right\}q(z)dz=\frac{1}{k}\int\tilde{p}(z)dz p(accept)={kq(z)p~(z)}q(z)dz=k1p~(z)dz
原则上𝑘可以取得很大,从而满足总能全覆盖,但是不难发现,𝑘取得越大,拒绝概率也更高;因此,选取的𝑘要尽可能的小,并使得𝑘𝑞(𝑧)恰好能覆盖$ \tilde{\mathrm{p}}(z)$

11.2.4 重要采样

E [ f ] = ∫ f ( z ) p ( z ) d z (11.1) \mathbb{E}[f] = \int f(z)p(z)dz \tag{11.1} \\ E[f]=f(z)p(z)dz(11.1)

f ^ = 1 L ∑ l = 1 L f ( z ( l ) ) (11.2) \hat{f} = \frac{1}{L}\sum\limits_{l=1}^L f(z^{(l)}) \tag{11.2} f^=L1l=1Lf(z(l))(11.2)

想从复杂概率分布中采样的一个主要原因是能够使用式(11.1)计算期望。重要采样(importance sampling)的方法提供了直接近似期望的框架,但是它本身并没有提供从概率分布$ p(z) $中采样的方法。

公式(11.2)给出的期望的有限和近似依赖于能够从概率分布 p ( z ) p(z) p(z)中采样。然而,假设直接从 p ( z ) p(z) p(z)中采样无法完成,但是对于任意给定的 z z z值,我们可以很容易地计算 p ( z ) p(z) p(z)一种简单的计算期望的方法是将 z z z空间离散化为均匀的格点,将被积函数使用求和的方式计算,形式为
E [ f ] ≃ ∑ l = 1 L p ( z ( l ) ) f ( z ( l ) ) \mathbb{E}[f] \simeq \sum\limits_{l=1}^Lp(z^{(l)})f(z^{(l)}) E[f]l=1Lp(z(l))f(z(l))
这种方法的一个明显的问题是求和式中的项的数量随着 z z z的维度指数增长。此外,正如我们已经注意到的那样,我们感兴趣的概率分布通常将它们的大部分质量限制在 z z z空间的一个很小的区域,因此均匀地采样非常低效,因为在高维的问题中,只有非常小的一部分样本会对求和式产生巨大的贡献。我们希望从 p ( z ) p(z) p(z)的值较大的区域中采样,或理想情况下,从 p ( z ) f ( z ) p(z)f(z) p(z)f(z)的值较大的区域中采样

与拒绝采样的情形相同,重要采样基于的是对提议分布 q ( z ) q(z) q(z)的使用,我们很容易从提议分布中采样,如下图所示:

重要采样解决的是计算函数 f ( z ) f(z) f(z)关于分布 p ( z ) p(z) p(z)的期望的问题,其中,从 p ( z ) p(z) p(z)中直接采样比较困难。相反,样本 z ( l ) {z^{(l)}} z(l)从一个简单的概率分布 q ( z ) q(z) q(z)中抽取,求和式中的对应项的权值为 p ( z ( l ) ) / q ( z ( l ) ) p(z^{(l)})/q(z^{(l)}) p(z(l))/q(z(l)),这样就可以还原到从 p ( z ) p(z) p(z)中取样。

上述过程中的式子,我们可以通过$ q(z) 中的样本 中的样本 中的样本 {z^{(l)}} $的有限和的形式来表示期望
E = ∫ f ( z ) p ( z ) d z   = ∫ f ( z ) p ( z ) q ( z ) q ( z ) d z ≃ 1 L ∑ l = 1 L p ( z ( l ) ) q ( z ( l ) ) f ( z ( l ) ) \mathbb{E} = \int f(z)p(z)dz \ = \int f(z)\frac{p(z)}{q(z)}q(z)dz \simeq \frac{1}{L}\sum\limits_{l=1}^L\frac{p(z^{(l)})}{q(z^{(l)})}f(z^{(l)}) E=f(z)p(z)dz =f(z)q(z)p(z)q(z)dzL1l=1Lq(z(l))p(z(l))f(z(l))
其中 r l = p ( z ( l ) ) / q ( z ( l ) ) r_l = p(z^{(l)}) / q(z^{(l)}) rl=p(z(l))/q(z(l))被称为重要性权重(importance weights),修正了由于从错误的概率分布 q ( z ) q(z) q(z)中采样引入的偏差。

而更常见的情形是,概率分布 p p p的计算结果没有标准化,也就是 p ( z ) = p ~ ( z ) / Z p p(z) = \tilde{p}(z) / Z_p p(z)=p~(z)/Zp中我们只知道 p ~ ( z ) \tilde{p}(z) p~(z),其中 p ~ ( z ) \tilde{p}(z) p~(z)可以很容易地由 z z z计算出来(可能没有函数表达式),而 Z p Z_p Zp未知( p ~ ( z ) \tilde{p}(z) p~(z)无法积分算)。类似的,我们可能希望使用重要采样分布 q ( z ) = q ~ ( z ) / Z q q(z) = \tilde{q}(z) / Z_q q(z)=q~(z)/Zq中的 q ~ ( z ) \tilde{q}(z) q~(z),它具有相同的性质。于是我们得到:
E [ f ] = ∫ f ( z ) p ( z ) d z   = Z q Z p ∫ f ( z ) p ~ ( z ) q ~ ( z ) q ( z ) d z   ≃ Z q Z p 1 L ∑ l = 1 L r ~ l f ( z ( l ) ) \mathbb{E}[f] = \int f(z)p(z)dz \ = \frac{Z_q}{Z_p}\int f(z)\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \ \simeq \frac{Z_q}{Z_p}\frac{1}{L}\sum\limits_{l=1}^L\tilde{r}_lf(z^{(l)}) E[f]=f(z)p(z)dz =ZpZqf(z)q~(z)p~(z)q(z)dz ZpZqL1l=1Lr~lf(z(l))
其中 r ~ l = p ~ ( z ( l ) ) / q ~ ( z ( l ) ) \tilde{r}_l = \tilde{p}(z^{(l)}) / \tilde{q}(z^{(l)}) r~l=p~(z(l))/q~(z(l))

我们还可以使用同样的样本集合来计算比值 Z p / Z q Z_p / Z_q Zp/Zq,结果为:
Z p Z q = 1 Z q ∫ p ~ ( z ) d z = ∫ p ~ ( z ) q ~ ( z ) q ( z ) d z   ≃ 1 L ∑ l = 1 L r ~ l \frac{Z_p}{Z_q} = \frac{1}{Z_q}\int\tilde{p}(z)dz = \int\frac{\tilde{p}(z)}{\tilde{q}(z)}q(z)dz \ \simeq \frac{1}{L}\sum\limits_{l=1}^L\tilde{r}_l ZqZp=Zq1p~(z)dz=q~(z)p~(z)q(z)dz L1l=1Lr~l

第一个等式中 Z p Z_p Zp ∫ p ~ ( z ) d z \int\tilde{p}(z)dz p~(z)dz等价计算了出来,第二个等式中 Z q Z_q Zq q ( z ) = q ~ ( z ) / Z q q(z) = \tilde{q}(z) / Z_q q(z)=q~(z)/Zq替代

因此:
E [ f ] ≃ ∑ l = 1 L w l f ( z ( l ) ) \mathbb{E}[f] \simeq \sum\limits_{l=1}^Lw_lf(z^{(l)}) E[f]l=1Lwlf(z(l))
其中:
w l = r ~ l ∑ m r ~ m = p ~ ( z ( l ) ) / q ( z ( l ) ) ∑ m p ~ ( z ( l ) ) / q ( z ( l ) ) w_l = \frac{\tilde{r}_l}{\sum_m\tilde{r}_m} = \frac{\tilde{p}(z^{(l)})/q(z^{(l)})}{\sum_m\tilde{p}(z^{(l)})/q(z^{(l)})} wl=mr~mr~l=mp~(z(l))/q(z(l))p~(z(l))/q(z(l))

11.2.5 Metropolis方法

与拒绝采样和重要采样相同,我们再一次从提议分布中采样。但是这次我们记录下当前状态 z ( τ ) z^{(\tau)} z(τ)以及依赖于这个当前状态的提议分布 q ( z ∣ z τ ) q(z|z^\tau) q(zzτ),从而样本序列 z ( 1 ) , z ( 2 ) , … z^{(1)},z^{(2)},\ldots z(1),z(2),组成了一个马尔科夫链。

我们假设提议分布足够简单很容易直接采样,且 p ( z ) = p ~ ( z ) / Z p p(\mathbf{z})=\widetilde{p}({\mathbf{z}})/Z_{p} p(z)=p (z)/Zp中的 p ~ ( z ) \widetilde{p}({\mathbf{z}}) p (z)可以很容易的计算值。

在算法的每次迭代中,我们从提议分布中生成一个候选样本 z ∗ z^* z,然后根据一个恰当的准则接受这个样本。

在基本的 Metropolis 算法中,我们假定提议分布是对称的,即 q ( z A ∣ z B ) = q ( z B ∣ z A ) q(z_A|z_B)=q(z_B|z_A) q(zAzB)=q(zBzA)对于所有的 z A z_A zA z B z_B zB都成立。这样,候选样本被接受的概率为:
A ( z ⋆ , z ( τ ) ) = min ⁡ ( 1 , p ~ ( z ⋆ ) p ~ ( z ( τ ) ) ) A(\mathbf{z}^{\star},\mathbf{z}^{(\tau)})=\min\left(1,\frac{\widetilde{p}(\mathbf{z}^{\star})}{\widetilde{p}(\mathbf{z}^{(\tau)})}\right) A(z,z(τ))=min(1,p (z(τ))p (z))
我们的接受准则是:当接受概率大于预设值u时,则接受这个样本。

如果候选样本被接受,那么 z ( τ + 1 ) = z ∗ z^{(\tau+1)} = z^* z(τ+1)=z;否则候选样本点 z ∗ z^* z被抛弃, z ( τ + 1 ) z^{(\tau+1)} z(τ+1)被设置为 z ( τ ) z^{(\tau)} z(τ)

然后从概率分布 q ( z ∣ z ( τ + 1 ) ) q(z|z^{(\tau+1)}) q(zz(τ+1))中再次抽取一个候选样本。

可以看到,在 Metropolis 算法中,当一个候选点被拒绝时,前一个样本点会被包含到是最终的样本的列表中,从而产生了这个样本点的多个副本。虽然在实际中我们只会保留一个样本副本,以及一个整数的权因子,记录状态出现了多少次。设计马尔科夫链蒙特卡洛方法的一个中心目标就是避免随机游走行为。

11.2.6 Metropolis-Hasting 算法

与 Metropolis 算法相比,提议分布不再是参数的一个对称函数,此时的接受概率变为:
A k ( z ⋆ , z ( τ ) ) = min ⁡ ( 1 , p ~ ( z ⋆ ) q k ( z ( τ ) ∣ z ⋆ ) p ~ ( z ( τ ) ) q k ( z ⋆ ∣ z ( τ ) ) ) A_k(\mathbf{z}^{\star},\mathbf{z}^{(\tau)})=\min\left(1,\frac{\widetilde{p}(\mathbf{z}^{\star})q_k(\mathbf{z}^{(\tau)}|\mathbf{z}^{\star})}{\widetilde{p}(\mathbf{z}^{(\tau)})q_k(\mathbf{z}^{\star}|\mathbf{z}^{(\tau)})}\right) Ak(z,z(τ))=min(1,p (z(τ))qk(zz(τ))p (z)qk(z(τ)z))
其中k标记出可能的转移集合中的成员,对于一个对称的提议分布, Metropolis-Hasting 准则会退化为 Metropolis 准则。

具体推导过程设计到马尔科夫链的知识,这里只记形式

11.2.7 吉布斯采样

吉布斯采样是一个简单的并且广泛应用的马尔科夫链蒙特卡洛算法,可以看做 Metropolis-Hasting 算法的一个具体的情形

考虑我们项采样的概率分布 p ( z ) = p ( z 1 , … , z M ) p(z)=p(z_1,\ldots,z_M) p(z)=p(z1,,zM),并且假设我们已经选择了马尔科夫链的某个初始状态。吉布斯采样的每个步骤涉及到将一个变量的值替换为以剩余变量的值为条件,从这个概率分布中抽取的那个变量的值。具体流程如下:

参考书:PRML

参考:PRML学习笔记(十一) - Pelhans 的博客文章来源地址https://www.toymoban.com/news/detail-456579.html

到了这里,关于【机器学习】采样方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习中的采样:下采样,上采样,欠采样,过采样

    下采样:池化操作就是经典的下采样,将一张图片缩小,采用不同的方法将像素点合并从而获得更小分辨率的照片就叫做下采样。 上采样:也叫做图像插值上采样就和下采样反过来,将一张照片放大,在像素点之间根据放大倍数,以插值的形式插入像素值从而达到放大图像的

    2024年02月14日
    浏览(42)
  • PyTorch机器学习与深度学习技术方法

    近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。 Python基础知

    2024年02月02日
    浏览(46)
  • 深度学习上采样下采样概念以及实现

    #pic_center =400x 系列文章: 【深度学习】上采样,下采样,卷积 torch.nn.functional.interpolate函数 上采样 简单说将图片放大,通过在像素键插入数据 1.插值,一般使用的是双线性插值,因为效果最好,虽然计算上比其他插值方式复杂,但是相对于卷积计算可以说不值一提,其他插

    2024年02月03日
    浏览(77)
  • 【概率方法】重要性采样

    假设我们有一个关于随机变量 X X X 的函数 f ( X ) f(X) f ( X ) ,满足如下分布 p ( X ) p(X) p ( X ) 0.9 0.1 f ( X ) f(X) f ( X ) 0.1 0.9 如果我们要对 f ( X ) f(X) f ( X ) 的期望 E p [ f ( X ) ] mathbb{E}_p[f(X)] E p ​ [ f ( X ) ] 进行估计,并且我们有一些从 p p p 中采样的样本,那么朴素的想法是,直接

    2024年02月04日
    浏览(51)
  • 数学建模 | MATLAB数据建模方法--机器学习方法

    近年来,全国赛的题目中,多多少少都有些数据,而且数据量总体来说呈不断增加的趋势, 这是由于在科研界和工业界已积累了比较丰富的数据,伴随大数据概念的兴起及机器学习技术的发展, 这些数据需要转化成更有意义的知识或模型。 所以在建模比赛中, 只要数据量还

    2024年02月03日
    浏览(70)
  • 机器视觉项目流程和学习方法

    机器视觉项目流程: 00001.nbsp;需求分析和方案建立 00002.nbsp;算法流程规划和业务逻辑设计 00003.nbsp;模块化编程和集成化实现 00004.nbsp;调试和优化,交付客户及文档 学习机器视觉的方法: 00001.nbsp;实战学习,结合项目经验教训 00002.nbsp;学习C++和C#,使用Visual Studio进行开发 0000

    2024年02月13日
    浏览(45)
  • 【附代码】python采样方法集锦

    ✅作者简介:在读博士,伪程序媛,人工智能领域学习者,深耕机器学习,交叉学科实践者,周更前沿文章解读,提供科研小工具,分享科研经验,欢迎交流! 📌个人主页: https://blog.csdn.net/allein_STR?spm=1011.2559.3001.5343 💯特色专栏:深度学习和WRF,提供人工智能方方面面小姿

    2024年02月06日
    浏览(78)
  • 通信采样点原理及计算方法

    采样点是节点判断信号逻辑电平的位置,对CAN总线来说极其重要,尤其在整车组网的时候,多个节点要保持同一个采样点。 CAN网络在通信过程需要通过对总线电平进行采样,从而判断信号逻辑是0还是1.若网络中节点采样点不一致可能会导致同样的采样频率出现采样错误,进而

    2024年02月05日
    浏览(39)
  • 机器学习:10种方法解决模型过拟合

    本文介绍机器学习/深度学习建模过程防止模型过拟合的10种有效方法: 增加训练数据集 交叉验证 正则化 合适的特征选择 降低模型复杂度 集成方法 早停法Early Stopping 数据增强 Dropout 监控训练过程 增加更多的训练数据有助于防止过拟合,主要是因为更多的数据能够提供更全

    2024年02月08日
    浏览(68)
  • 【机器学习-03】矩阵方程与向量求导方法

      在铺垫了基础矩阵和线性代数的相关知识后,我们现在尝试将【机器学习-01】中提到的方程组表示形式转化为矩阵形式,并利用矩阵方法来求解相关方程。同时,在【机器学习-01】中,我们已经初步探讨了最小二乘法这一优化算法的基本思想。最小二乘法是一个基础而重

    2024年03月20日
    浏览(39)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包