【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章讲解


💥1 概述

V2G优化调度:

设计了一种算法,以充电成本最小的方式安排500辆电动汽车使用一个充电站,同时随机安排任意少数电动汽车前往指定的房屋负载,在那里放电并返回充电站。模拟测试了三种不同的场景,第一,客户满意度(即电动汽车车主满意度)被认为是放电所赚的钱与充电所花的钱之间的总差额,第二,客户满意度与第一种场景相同,但在模拟结束时减去未完成的费用的总成本,第三,客户满意度考虑了放电的利润,充电的成本,在整个模拟过程中,未完成充电的总成本和从每辆电动汽车切换的成本。

为了模拟电动汽车的行为,使用了许多不同的基于时间的变量。以下是最关键的变量,是决定客户满意度的主要因素:a) X -充电状态(1或0)b) Y -放电状态(1或0)c) SOC -充电状态(以最大电池容量的百分比测量)与变量一起,电动汽车初始化的值包括最大电池容量,第三种情况的最大开关数量等。在整个仿真过程中的每个时间单位,对x和y变量以及能量约束实施各种系统约束,以确保稳定性和车辆到电网系统的工作。例如,单个EV在单个单位时间内只能在不行驶时处于充电或放电状态,而不能同时处于充电或放电状态(即x = 1或y = 1,不能同时处于充电或放电状态)。

另一个关键的系统要求是充电站有足够的能量来继续为正在充电的车辆充电。在第三种情况中引入了一个额外的约束,其中每辆电动汽车必须保持在从充电到放电、从充电到空闲等状态允许的最大开关数量限制内。初始化值、EV变量和各种约束方程的基础是Shima Hosseinpour和Ona Egbue的研究论文——优化电动汽车充放电的动态调度。

一旦模拟完成,将进行中期模拟行程的车辆的最终充电状态与到达房屋负载时和在房屋负载完成放电后的充电状态进行比较。还制作了各种图形和条形图-每辆电动汽车的开关数量,随机电动汽车的充电状态与时间,在指定房屋进行模拟中期放电行程的电动汽车的充电状态与距离等。

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

在离线和在线充放电调度模型中,分别开发了三种不同的场景。在第一种场景中,目标函数只考虑电动汽车车主的放电收益和充电成本。因此,该模型预计会对电动汽车进行调度,使它们放电的次数多于充电的次数。在第二个场景中,考虑未完成的充电请求以及放电的利润。因此,未充电电力的惩罚成本被添加到第二种情况的目标函数中。在第三种情况下,根据电池寿命,考虑到电动汽车电池可以拥有的最大开关数量的限制。这个限制包含在模型的约束中。所以,第三种情况的目标函数和第二种情况是一样的。

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

详细文章讲解及数学模型讲解见第4部分 

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

📚2 运行结果

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现) 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现) 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现) 【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

部分代码:

%% Figure 16/22

figure(2)
plot(planning_periods, total_x_1st, planning_periods, total_x_2nd, 'r', planning_periods, total_x_3rd, 'g')
title('Figure 16/22')
xlabel('Time')
ylabel('Electricty Units')
legend('Scenario 1','Scenario 2', 'Scenario 3')

%% Figure 17/23

figure(3)
plot(planning_periods, total_y_1st, planning_periods, total_y_2nd, 'r', planning_periods, total_y_3rd, 'g')
title('Figure 17/23')
xlabel('Time')
ylabel('Electricty Units')
legend('Scenario 1','Scenario 2', 'Scenario 3')

%% Figure 18/27

figure(4)
yyaxis left
plot(planning_periods, total_x_3rd, planning_periods, total_y_3rd)
title('Figure 18/27')
xlabel('Time')
ylabel('Electricity Units')
yyaxis right
plot(planning_periods, Ct_available_EU)
ylabel('Price (cents)')
legend('Charging','Discharging','Price')

%% Figure 19/24

[list_of_total_z_1st, z_index_1st] = sort(list_of_total_z_1st);
z_freq_temp_1st = frequency_of_z_1st;
for i = 1:length(z_freq_temp_1st)
    frequency_of_z_1st(i) = z_freq_temp_1st(z_index_1st(i));
    if ~ismember(list_of_total_z_1st(i),list_of_total_z_2nd)
        list_of_total_z_2nd = [list_of_total_z_2nd list_of_total_z_1st(i)];
        frequency_of_z_2nd = [frequency_of_z_2nd 0];
    end
    if ~ismember(list_of_total_z_1st(i),list_of_total_z_3rd)
        list_of_total_z_3rd = [list_of_total_z_3rd list_of_total_z_1st(i)];
        frequency_of_z_3rd = [frequency_of_z_3rd 0];
    end
end

[list_of_total_z_2nd, z_index_2nd] = sort(list_of_total_z_2nd);
z_freq_temp_2nd = frequency_of_z_2nd;
for i = 1:length(z_freq_temp_2nd)
    frequency_of_z_2nd(i) = z_freq_temp_2nd(z_index_2nd(i));
end

[list_of_total_z_3rd, z_index_3rd] = sort(list_of_total_z_3rd);
z_freq_temp_3rd = frequency_of_z_3rd;
for i = 1:length(z_freq_temp_3rd)
    frequency_of_z_3rd(i) = z_freq_temp_3rd(z_index_3rd(i));
end

plot_param = zeros(length(frequency_of_z_1st),3);
for i = 1:length(frequency_of_z_1st)
    for j = 1:3
        if j == 1
            plot_param(i,j) = frequency_of_z_1st(i);
        elseif j == 2
            plot_param(i,j) = frequency_of_z_2nd(i);
        else
            plot_param(i,j) = frequency_of_z_3rd(i);
        end
    end
end

figure(5)
bar(list_of_total_z_1st, plot_param)
title('Figure 19/24')
xlabel('Z')
ylabel('Frequency')
legend('Scenario 1','Scenario 2', 'Scenario 3')

%% Figure 20/25

z_values_1st = [];
z_values_2nd = [];
z_values_3rd = [];
EVs = [];

for i = 1:N
    z_values_1st = [z_values_1st EV_1st(i).z];
    z_values_2nd = [z_values_2nd EV_2nd(i).z(periods)];
    z_values_3rd = [z_values_3rd EV_3rd(i).z(periods)];
    EVs = [EVs i];
end

figure(6)
plot(EVs, z_values_1st, EVs, z_values_2nd, 'r', EVs, z_values_3rd, 'g')
xlabel('EV Number')
ylabel('Electricity Units')
title('Figure 20/25')
legend('Z1','Z2','Z3')

%% Figure 21/28

figure(7)
plot(planning_periods, total_x_3rd, planning_periods, cpt_available_EU)
title('Figure 18/27')
xlabel('Time')
ylabel('Electricity Units')
legend('Charging','Capacity')

%% SOC vs distance plot of test EV taking home trip

%Assuming an initial SOC of 100% (i.e., of either 10 EU or 15 EU) can cover
%400 miles at full charge. First determine whether the test EV is PHEV or
%BEV

distance_per_EU = [];
distance_per_period = [];
total_periods = [];
home_vehicle_IDs = [];
for i = 1:N
    if ismember(i,home_vehicles)
        distance_per_EU = [distance_per_EU 400/EV(i).mc]; %Distance covered per EU depending on the type
        distance_per_period = distance_per_EU; %Assume 1 EU is spent in one period of travelling
        total_periods = [total_periods EV(i).travel_time];
        home_vehicle_IDs = [home_vehicle_IDs i];
    end
end

%EV energy vs distance plot 
random_num = randi(length(total_periods));
total_periods_vector = zeros(1,total_periods(random_num));
count = 0;
for i = 1:total_periods(random_num)
    count = count + 1;
    total_periods_vector(i) = count*distance_per_period(random_num);
end

%Create a uniformly distributed distance vector
total_periods_vector = linspace(total_periods_vector(1),total_periods_vector(length(total_periods_vector)),total_periods(random_num)+1);

start_time = EV_1st(home_vehicle_IDs(random_num)).schedule(2);
end_time = EV_1st(home_vehicle_IDs(random_num)).schedule(3);

figure(8)
plot(total_periods_vector, EV_1st(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_1st(home_vehicle_IDs(random_num)).mc).^(-1)),total_periods_vector, EV_2nd(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_2nd(home_vehicle_IDs(random_num)).mc).^(-1)),total_periods_vector, EV_3rd(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_3rd(home_vehicle_IDs(random_num)).mc).^(-1)))
title('Energy vs. Distance plot for randomly chosen vehicle to recharge home')
xlabel('Distance in miles')
ylabel('State of Charge of EV in Percentage of Max Capacity')
legend('1st Scenario','2nd Scenario', '3rd Scenario')

figure(9)
plot(total_periods_vector, EV_1st(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_1st(home_vehicle_IDs(random_num)).mc).^(-1)),total_periods_vector, EV_2nd(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_2nd(home_vehicle_IDs(random_num)).mc).^(-1)))
title('Energy vs. Distance plot for randomly chosen vehicle to recharge home')
xlabel('Distance in miles')
ylabel('State of Charge of EV in Percentage of Max Capacity')
legend('1st Scenario','2nd Scenario')

figure(10)
plot(total_periods_vector, EV_2nd(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_2nd(home_vehicle_IDs(random_num)).mc).^(-1)),total_periods_vector, EV_3rd(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_3rd(home_vehicle_IDs(random_num)).mc).^(-1)))
title('Energy vs. Distance plot for randomly chosen vehicle to recharge home')
xlabel('Distance in miles')
ylabel('State of Charge of EV in Percentage of Max Capacity')
legend('2nd Scenario', '3rd Scenario')

figure(11)
plot(total_periods_vector, EV_1st(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_1st(home_vehicle_IDs(random_num)).mc).^(-1)),total_periods_vector, EV_3rd(home_vehicle_IDs(random_num)).soc(start_time:end_time).*(100.*(EV_3rd(home_vehicle_IDs(random_num)).mc).^(-1)))
title('Energy vs. Distance Plot for Randomly Chosen Vehicle to Recharge Home')
xlabel('Distance in miles')
ylabel('State of Charge of EV in Percentage of Max Capacity')
legend('1st Scenario', '3rd Scenario')

%% SOC vs time plot of test EV taking home trip

figure(12)
plot(planning_periods, EV_1st(home_vehicle_IDs(random_num)).soc.*(100.*(EV_1st(home_vehicle_IDs(random_num)).mc).^(-1)), planning_periods, EV_2nd(home_vehicle_IDs(random_num)).soc.*(100.*(EV_2nd(home_vehicle_IDs(random_num)).mc).^(-1)), planning_periods, EV_3rd(home_vehicle_IDs(random_num)).soc.*(100.*(EV_3rd(home_vehicle_IDs(random_num)).mc).^(-1)))
title('Energy vs Time Plot for Randomly Chosen Vehicle to Recharge Home')
xlabel('Time in periods')
ylabel('State of Charge of EV in Percentage of Max Capacity')
legend('1st Scenario', '2nd Scenario', '3rd Scenario')

【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]汪思奇.考虑V2G的区域综合能源系统运行调度优化[J].科学技术创新,2022(34):30-34.

[2]郑鑫,邱泽晶,郭松,廖晖,黄玉萍,雷霆.电动汽车V2G调度优化策略的多指标评估方法[J].新能源进展,2022,10(05):485-494.

[3]肖丽,谢尧平,胡华锋,罗维,朱小虎,刘晓波,宋天斌,李敏.基于V2G的电动汽车充放电双层优化调度策略[J].高压电器,2022,58(05):164-171.DOI:10.13296/j.1001-1609.hva.2022.05.022.文章来源地址https://www.toymoban.com/news/detail-456717.html

🌈4 Matlab代码、数据、文章讲解

到了这里,关于【V2G】电动汽车接入电网优化调度研究(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 开源 | 慧哥充电桩平台V2.5.2(支持 汽车 电动自行车 云快充1.5、云快充1.6 微服务 )

    pc管理后台 39.98.222.58:9251 admin/123456 **开源充电桩云平台(v2.5.2)支持 前端uniapp(H5、小程序)、采集端、运营端、代理商端、充电桩硬件(电动自行车、电动汽车)全业务场景,平台目前服务企业1000+,采用SpringBoot、SpringCloud、MySQL、Netty、MQTT、支付宝支付、微信支付、微信退

    2024年04月09日
    浏览(51)
  • 基于峰谷分时电价引导下的电动汽车充电负荷优化(matlab代码)

    目录 1 主要内容 峰谷电价优化 电动汽车充电负荷变化 2 部分代码 3 程序结果 该程序基本复现《基于峰谷分时电价引导下的电动汽车充电负荷优化》,代码主要做的是基于NSGA-II的电动汽车充电负荷优化,首先,在研究电动汽车用户充电需求的前提下,利用蒙特卡洛方法对2

    2024年02月15日
    浏览(37)
  • 开源代码分享(8)—大规模电动汽车时空耦合双层优化调度(附matlab代码)

    参考文献: [1]He L , Yang J , Yan J , et al. A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles[J]. Applied Energy, 2016, 168(apr.15):179-192. DOI:10.1016/j.apenergy.2016.01.089         电动汽车(EV)是一种有前景的环保技术,因其减少使用化石燃料的潜力而备受关注。大规

    2024年02月16日
    浏览(35)
  • 含多类型充电桩的电动汽车充电站优化配置方法(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码、数据及文章

    2024年02月16日
    浏览(39)
  • 【SCI一区】【电动车】基于ADMM双层凸优化的燃料电池混合动力汽车研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 1.2 电动车动力学方程 1.3 电池模型 📚2 运行结果 🎉3 参

    2024年02月14日
    浏览(46)
  • 基于区块链和V2G技术的充电站

    1 产品背景 1.1 充电桩行业发展现状     随着新能源汽车行业的发展,充电桩的需求也随之扩大,为了解决充电桩市场保有量不足、共享充电桩市场鱼龙混杂、市场规范不定、行业内存在黑心企业利用“虚假充电桩”骗取国家补贴和利用热点非法集资,卷走投资人的合法财产

    2024年02月01日
    浏览(55)
  • 福特汽车在全球电动汽车市场的主导地位正在不断扩大

    来源:猛兽财经 作者:猛兽财经 2023年7月27日,美国最大的汽车巨头之一福特汽车(F)公布了其2023年第二季度财报。 2023年7月6日,福特汽车宣布,第二季度美国市场的汽车销量已经较2023年第一季度增长了11.7%,令投资者倍感鼓舞。更重要的是,野马Mach-E的销量继续在加速,与

    2024年02月15日
    浏览(41)
  • 3万一5万新能源电动汽车,3万内的新能源电动轿车

    6万左右可以买的有零跑T03、欧拉黑猫、欧拉白猫等。 零跑T03定位长续航智能纯电小车,采用5门4座布局,长宽高分别为3620mm*1652mm*1577mm,轴距为2400mm,综合工况续航里程达到403KM,搭载L2级智能驾驶辅助。 零跑T03共推出:夜眸蓝、晨光黄、金属黑、光白、磁灰五种车色,并搭配

    2024年02月04日
    浏览(58)
  • 如何降低电动汽车软件的开发成本和风险?

    大多数的汽车制造商无法从销售电动汽车(EV)中获得利润,但计划快速进入市场的电动汽车初创公司是无法承担这样的损失的。 由于飙升的电池价格、高昂的组件成本和低迷的销量削弱了盈利能力,电动汽车初创公司必须将视线转到软件开发,从预算、进度和人力投入水平

    2024年02月04日
    浏览(49)
  • LabVIEW电动汽车直流充电桩监控系统

    LabVIEW电动汽车直流充电桩监控系统 随着电动汽车的普及,充电桩的安全运行成为重要议题。通过集成传感器监测、单片机技术与LabVIEW开发平台,设计了一套电动汽车直流充电桩监控系统,能实时监测充电桩的温度、电压和电流,并进行数据记录与越限报警,提高了充电设施

    2024年03月27日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包