使用model._modules.items()获取pytorch网络模型中每一层的名称/对象

这篇具有很好参考价值的文章主要介绍了使用model._modules.items()获取pytorch网络模型中每一层的名称/对象。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

model._modules.items()是一个包含模型所有子模块的迭代器。在PyTorch中,当我们定义一个nn.Module子类时,我们可以使用nn.Sequentialnn.ModuleDict等容器类将多个子模块组合成一个整体。在这种情况下,我们可以通过访问nn.Module类中的_modules属性来访问这些子模块。_modules是一个有序字典,其中键是子模块的名称,值是子模块对象。例如,在下面的示例中,我们使用nn.Sequential容器组合了两个卷积层:

import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.relu(x)
        return x

model = MyModel()
for name, module in model._modules.items():
    print(name, module)

输出如下:

conv1 Conv2d(3, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
conv2 Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
relu ReLU()

在上面的例子中,我们可以通过迭代model._modules.items()来访问模型中的每个子模块。name是子模块的名称(例如"conv1"、“conv2"和"relu”),module是子模块的实例对象(例如nn.Conv2dnn.ReLU)。在递归模型中,每个子模块都可以是一个递归模型,因此我们可以使用_modules属性来递归遍历整个模型的所有子模块。文章来源地址https://www.toymoban.com/news/detail-457009.html

到了这里,关于使用model._modules.items()获取pytorch网络模型中每一层的名称/对象的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型

    大家好,我是微学AI,今天给大家介绍一下人工智能(Pytorch)搭建模型6-使用Pytorch搭建卷积神经网络ResNet模型,在本文中,我们将学习如何使用PyTorch搭建卷积神经网络ResNet模型,并在生成的假数据上进行训练和测试。本文将涵盖这些内容:ResNet模型简介、ResNet模型结构、生成假

    2024年02月06日
    浏览(73)
  • 机器学习笔记 - PyTorch Image Models图像模型概览 (timm)

            PyTorch Image Models (timm)是一个用于最先进的图像分类的库,包含图像模型、优化器、调度器、增强等的集合;是比较热门的论文及代码库。         虽然越来越多的低代码和无代码解决方案可以轻松开始将深度学习应用于计算机视觉问题,但我们经常与希望寻求

    2024年02月12日
    浏览(32)
  • PyTorch学习笔记(十三)——现有网络模型的使用及修改

     以分类模型的VGG为例   设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的 设置为 True 时,网络模型中的参数在数据集上是训练好的,能达到比较好的效果 CIFAR10 把数据分成了10类,而 vgg16 模型把数据分成了 1000 类,如何应用这个网络模型呢? 方法1:把最

    2024年02月12日
    浏览(36)
  • PyTorch入门学习(十五):现有网络模型的使用及修改

    目录 一、使用现有网络模型 二、修改现有网络模型 一、使用现有网络模型 PyTorch提供了许多流行的深度学习模型,这些模型在大规模图像数据集上进行了预训练。其中一个著名的模型是VGG16。下面是如何使用VGG16模型的示例代码: 在上述代码中,使用 torchvision.models.vgg16 来加

    2024年02月05日
    浏览(32)
  • 使用Pytorch加载预训练模型及修改网络结构

    可以看到, AlexNet 有三个层,分别是 features、avgpool、classifier 。用 model.features 查看 features层 (也就是卷积层)的网络结构。

    2024年02月13日
    浏览(33)
  • 【pytorch】同一个模型model.train()和model.eval()模式下的输出完全不同

    测试时为什么要使用model.eval() - 小筱痕 - 博客园 (cnblogs.com) 输出不同的原因是由于student模型中的某些层的行为不同。一些层,如dropout和batch normalization,在训练和评估过程中的行为是不同的。 在训练过程中,dropout层会随机将一部分输入置为零,这有助于防止过拟合。dropou

    2024年02月12日
    浏览(56)
  • 【深度学习PyTorch入门】6.Optimizing Model Parameters 优化模型参数

    现在我们有了模型和数据,是时候通过优化数据上的参数来训练、验证和测试我们的模型了。训练模型是一个迭代过程;在每次迭代中,模型都会对输出进行猜测,计算其猜测中的误差( 损失 ),收集相对于其参数的导数的误差(如我们在上一节中看到的),并使用梯度下

    2024年01月24日
    浏览(60)
  • 【PyTorch简介】4.Building the model layers 生成模型层

    神经网络是按层连接的 神经元 的集合。每个神经元都是一个小的计算单元,执行简单的计算来共同解决问题。神经元分为 3 种类型的层:输入层、隐藏层和输出层。隐藏层和输出层包含许多神经元。神经网络模仿人脑处理信息的方式。 activation function 激活函数 决定神经元是

    2024年01月18日
    浏览(40)
  • pytorch 测量模型运行时间,GPU时间和CPU时间,model.eval()介绍

    time.time() time.perf_counter() time.process_time() time.time() 和time.perf_counter() 包括sleep()time 可以用作一般的时间测量,time.perf_counter()精度更高一些 time.process_time()当前进程的系统和用户CPU时间总和的值 测试代码: 测试结果: 更详细解释参考 Python3.7中time模块的time()、perf_counter()和proce

    2024年02月06日
    浏览(43)
  • 【计算机视觉】干货分享:Segmentation model PyTorch(快速搭建图像分割网络)

    如何快速搭建图像分割网络? 要手写把backbone ,手写decoder 吗? 介绍一个分割神器,分分钟搭建一个分割网络。 仓库的地址: 该库的主要特点是: 高级 API(只需两行即可创建神经网络) 用于二元和多类分割的 9 种模型架构(包括传奇的 Unet) 124 个可用编码器(以及 timm

    2024年02月14日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包