LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

这篇具有很好参考价值的文章主要介绍了LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

上一篇文章介绍了几个开源LLM的环境搭建和本地部署,在使用ChatGPT接口或者自己本地部署的LLM大模型的时候,经常会遇到这几个参数,本文简单介绍一下~

  • temperature
  • top_p
  • top_k

关于LLM

上一篇也有介绍过,这次看到一个不错的图

A recent breakthrough in artificial intelligence (AI) is the introduction of language processing technologies that enable us to build more intelligent systems with a richer understanding of language than ever before. Large pre-trained Transformer language models, or simply large language models, vastly extend the capabilities of what systems are able to do with text.

LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

LLM看似很神奇,但本质还是一个概率问题,神经网络根据输入的文本,从预训练的模型里面生成一堆候选词,选择概率高的作为输出,上面这三个参数,都是跟采样有关(也就是要如何从候选词里选择输出)。

temperature

用于控制模型输出的结果的随机性,这个值越大随机性越大。一般我们多次输入相同的prompt之后,模型的每次输出都不一样。

  • 设置为 0,对每个prompt都生成固定的输出
  • 较低的值,输出更集中,更有确定性
  • 较高的值,输出更随机(更有创意😃)

LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

一般来说,prompt 越长,描述得越清楚,模型生成的输出质量就越好,置信度越高,这时可以适当调高 temperature 的值;反过来,如果 prompt 很短,很含糊,这时再设置一个比较高的 temperature 值,模型的输出就很不稳定了。

遇事不决就调参,调一下,万一就生成了不错的回答呢?

PS:ChatGLM提供的例子把范围限定在0-1之间。

top_k & top_p

这俩也是采样参数,跟 temperature 不一样的采样方式。

前面有介绍到,模型在输出之前,会生成一堆 token,这些 token 根据质量高低排名。

比如下面这个图片,输入 The name of that country is the 这句话,模型生成了一堆 token,然后根据不同的 decoding strategy 从 tokens 中选择输出。

LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

这里的 decoding strategy 可以选择

  • greedy decoding: 总是选择最高分的 token,有用但是有些弊端,详见下文
  • top-k: 从 tokens 里选择 k 个作为候选,然后根据它们的 likelihood scores 来采样
  • top-p: 候选词列表是动态的,从 tokens 里按百分比选择候选词

top-k 与 top-p 为选择 token 引入了随机性,让其他高分的 token 有被选择的机会,不像 greedy decoding 一样总是选最高分的。

greedy decoding

好处是简单,坏处是容易生成循环、重复的内容

Greedy decoding is a reasonable strategy but has some drawbacks such as outputs with repetitive loops of text. Think of the suggestions in your smartphone's auto-suggest. When you continually pick the highest suggested word, it may devolve into repeated sentences.

top-k

设置越大,生成的内容可能性越大;

设置越小,生成的内容越固定;

设置为1时,和 greedy decoding 效果一样。

LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

Changing the top-k parameter sets the size of the shortlist the model samples from as it outputs each token. Setting top-k to 1 gives us greedy decoding.

top-p

top-p 又名 Nucleus Sampling(核采样)

与 top-k 固定选取前 k 个 tokens 不同,top-p 选取的 tokens 数量不是固定的,这个方法是设定一个概率阈值。

继续上面的例子,将 top-p 设定为 0.15,即选择前 15% 概率的 tokens 作为候选。如下图所示,United 和 Netherlands 的概率加起来为 15% ,所以候选词就是这俩,最后再从这些候选词里,根据概率分数,选择 united 这个词。

LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature

Top-p is usually set to a high value (like 0.75) with the purpose of limiting the long tail of low-probability tokens that may be sampled. We can use both top-k and top-p together. If both k and p are enabled, p acts after k.

经常遇到的默认 top-p 值就是 0.7/0.8 这样,还是那个说法,设置太低模型的输出太固定,设置太高,模型彻底放飞自我也不好。文章来源地址https://www.toymoban.com/news/detail-457174.html

参考资料

  • https://docs.cohere.com/docs/controlling-generation-with-top-k-top-p
  • https://docs.cohere.com/docs/temperature
  • https://mp.weixin.qq.com/s/IswrgDEn94vy5dCO51I1sw

到了这里,关于LLM探索:GPT类模型的几个常用参数 Top-k, Top-p, Temperature的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Ansible操作MySQL常用的几个模块

    mysql_user模块用来添加,删除用户以及设置用户权限 创建MySQL数据库的用户与口令(非root@localhost用户),直接通过playbooks中的案例来说明吧。 说明,这个案例中,有提到常见的错误,例如有关login_unix_socket参数不设置,可能导致的错误。 补充:假如各个DB的期望赋予的权限不

    2024年02月06日
    浏览(38)
  • 面试题 : Top-k问题

    目录 简介 题目 示例 提示 开始解题 1.思路 2.解题代码 3.时间复杂度 4.运行结果 ​编辑 目前问题 真正的解法 1.以找前K个最大的元素为例 2.代码执行过程时间复杂度的计算 3.画图演示代码执行过程 4.解题代码 两种解法的比较 完结撒花✿ヽ(°▽°)ノ✿   博主推荐:毕竟面试题

    2024年02月12日
    浏览(40)
  • IO的几个模型

    说到I/O模型,都会牵扯到同步、异步、阻塞、非阻塞这几个词,以下讲解这几个词的概念。 阻塞和非阻塞 阻塞和非阻塞指的是一直等还是可以去做其他事。 阻塞(一直等水烧开)(blocking): 调用结果返回之前,调用者被挂起(当前线程进入非可执行状态,在这个状态,CPU不

    2024年02月12日
    浏览(45)
  • 堆的应用:Top-K问题

    朋友们、伙计们,我们又见面了,本期来给大家解读一下堆的应用--Top-K问题的相关知识点,如果看完之后对你有一定的启发,那么请留下你的三连,祝大家心想事成! 数据结构与算法专栏 :数据结构与算法 个  人  主  页 :stackY、 C 语 言 专 栏 :C语言:从入门到精通 目

    2024年02月07日
    浏览(43)
  • 数据结构 | TOP-K问题

    TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。 就是从N个数里面找最大前K个(N远大于K) 思路一: N个数插入到堆里面,PopK次 时间复杂度是 O(N*logN) + K*logN == O(N*logN) N很大很大,假设N是100亿,K是10 100亿个整数大概需要40G左右 所以

    2024年02月05日
    浏览(41)
  • 堆排序之“TOP-K”问题

    目录 一、什么是TOP-K问题 二、解决思路  一般的正常思路: 最优的解决思路: 三、文件流中实践TOP-K方法  创建包含足够多整数的文件: 向下调整算法 找出最大的K个数 完整版代码: 前面我已经学习过使用“堆排序”对数组排降序了,接下来再来看一个堆排序的应用场景。

    2024年02月06日
    浏览(41)
  • 【数据结构】堆的应用——Top-K

    目录 前言: 一、Top-K问题描述: 二、不同解决思路实现: ①.排序法: ②.直接建堆法: ③.K堆法 总结:         上篇文章我们学习了二叉树的顺序存储结构,并且对于实际使用中所常用的顺序存储结构——堆的各个接口进行实现。这篇文章我们将对堆的实际应用进行更加

    2024年02月16日
    浏览(54)
  • 值得你收藏的几个Stable Diffusion模型

    使用Stable Diffusion生成图片,模型是非常重要的,好的模型,哪怕你的提示词差一些、或者是很简单的提示词,也可以生成很不错的图片。这是我平时收藏的一些模型,分享给大家。 地址: https://civitai.com/models/6424 ChilloutMix是一个非常流行的模型,用于生成美女的图像。该模型

    2024年02月05日
    浏览(45)
  • 什么是堆,如何实现?(附堆排序,TOP-K问题)

    欢迎来到 Claffic 的博客   💞💞💞 “春风里,是谁 花一样烂漫?” 前言: 二叉树给大家讲解的差不多了,接下来就是二叉树的实际应用了:这期我们来讲堆,它是一种顺序结构的特殊二叉树,可以实现排序等功能,那就让我们开始吧! 目录 🌸Part1: 何为堆 1.堆的概念 2.堆

    2023年04月11日
    浏览(36)
  • 数据结构与算法:堆排序和TOP-K问题

    朋友们大家好,本节内容来到堆的应用:堆排序和topk问题 我们在c语言中已经见到过几种排序,冒泡排序,快速排序(qsort) 冒泡排序的时间复杂度为O(N 2 ),空间复杂度为O(1);qsort排序的时间复杂度为 O(nlogn),空间复杂度为O(logn),而今天所讲到的堆排序在时间与空间复杂度上相

    2024年03月08日
    浏览(62)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包