数据线性回归分析

这篇具有很好参考价值的文章主要介绍了数据线性回归分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、利用WPS进行线性回归分析

二、利用jupyter编程(不借助第三方库) 对数据进行线性回归分析

1、将数据文件上传(方便后续打开数据文件)

 2、添加代码

​编辑

3 、输出200组数据

4、输出2000组数据

 5、利用pandas打开excel文件出现ImportError解决方法

 三、借助skleran对数据进行线性回归分析

 总结

参考资料


一、利用WPS进行线性回归分析

1、20组数据

选中两组数据,插入散点图

数据线性回归分析

更改数据为前20组

数据线性回归分析

数据线性回归分析

 进行线性回归分析

选中散点图,点击图表元素,选中趋势线

数据线性回归分析

 显示回归方程和R平方值

选中回归线,点击趋势线,选中显示公式和R平方值

数据线性回归分析

获得数据

2、200组数据

将数据更改为使用前200组

数据线性回归分析

 数据线性回归分析

获得数据

3、2000组数据

将数据更改为前2000组

数据线性回归分析

获得数据

二、利用jupyter编程(不借助第三方库) 对数据进行线性回归分析

1、将数据文件上传(方便后续打开数据文件)

数据线性回归分析

 2、添加代码

import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
#准备数据
p=pd.read_excel('weights_heights(身高-体重数据集).xls','weights_heights')
#读取20行数据
p1=p.head(20)
x=p1["Height"]
y=p1["Weight"]
# 平均值
x_mean = np.mean(x)
y_mean = np.mean(y)
#x(或y)列的总数(即n)
xsize = x.size
zi=((x-x_mean)*(y-y_mean)).sum()
mu=((x-x_mean)*(x-x_mean)).sum()
n=((y-y_mean)*(y-y_mean)).sum()
# 参数a b
a = zi / mu
b = y_mean - a * x_mean
#相关系数R的平方
m=((zi/math.sqrt(mu*n))**2)
# 这里对参数保留4位有效数字
a = np.around(a,decimals=4)
b = np.around(b,decimals=4)
m = np.around(m,decimals=4)
print(f'回归线方程:y = {a}x +({b})') 
print(f'相关回归系数为{m}')
#借助第三方库skleran画出拟合曲线
y1 = a*x + b
plt.scatter(x,y)
plt.plot(x,y1,c='r')

输出20组数据

数据线性回归分析

3 、输出200组数据

数据线性回归分析

数据线性回归分析

4、输出2000组数据

数据线性回归分析

 5、利用pandas打开excel文件出现ImportError解决方法

错误原因:没有安装xlrd模块

解决方法:在Anaconda安装xlrd模块

激活虚拟环境

数据线性回归分析

 安装xlrd模块

conda install -c anaconda xlrd

数据线性回归分析

 三、借助skleran对数据进行线性回归分析

添加代码

# 导入所需的模块
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

p=pd.read_excel('weights_heights(身高-体重数据集).xls','weights_heights')
#读取数据行数
p1=p.head(20)
x=p1["Height"]
y=p1["Weight"]
# 数据处理
# sklearn 拟合输入输出一般都是二维数组,这里将一维转换为二维。
y = np.array(y).reshape(-1, 1)
x = np.array(x).reshape(-1, 1)
# 拟合
reg = LinearRegression()
reg.fit(x,y)
a = reg.coef_[0][0]     # 系数
b = reg.intercept_[0]   # 截距
print('拟合的方程为:Y = %.4fX + (%.4f)' % (a, b))
c=reg.score(x,y)    # 相关系数
print(f'相关回归系数为%.4f'%c)

# 可视化
prediction = reg.predict(y)                # 根据高度,按照拟合的曲线预测温度值
plt.scatter(x,y)
y1 = a*x + b
plt.plot(x,y1,c='r')

20组数据

数据线性回归分析

 200组数据

数据线性回归分析

2000组数据

数据线性回归分析

 总结

利用wps和jupyter解决线性回归问题得出的结果大致相同。在利用jupyter解决线性回归问题时,出现无法打开目标文件读取数据,利用网络查询最终解决问题。

参考资料

Python错误集锦:pandas读取excel提示ImportError

Excel和jupyter实现数据的线性回归文章来源地址https://www.toymoban.com/news/detail-458212.html

到了这里,关于数据线性回归分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python数据分析案例22——财经新闻可信度分析(线性回归,主成分回归,随机森林回归)

     本次案例还是适合人文社科领域,金融或者新闻专业。本科生做线性回归和主成分回归就够了,研究生还可以加随机森林回归,其方法足够人文社科领域的硕士毕业论文了。 有八个自变量,[\\\'微博平台可信度\\\',\\\'专业性\\\',\\\'可信赖性\\\',\\\'转发量\\\',\\\'微博内容质量\\\',\\\'时效性\\\',\\\'验证程度

    2023年04月08日
    浏览(72)
  • 基于多元线性回归的Boston房价数据分析

    Boston房价数据是R语言中一类重要的数据,常被用来做各种方法分析,即它是波士顿不同地区的506个家庭住房信息,其中包括影响房价的14个因素如城镇的人均犯罪率、氮氧化合物浓度、城镇黑人的比例、低教育程度的人口比例等,而且每个因素对房价的影响都是不同显著程度

    2024年01月19日
    浏览(54)
  • 使用自己的数据利用pytorch搭建全连接神经网络进行回归预测

    引入必要的库,包括PyTorch、Pandas等。 这里使用sklearn自带的加利福尼亚房价数据,首次运行会下载数据集,建议下载之后,处理成csv格式单独保存,再重新读取。 后续完整代码中,数据也是采用先下载,单独保存之后,再重新读取的方式。

    2024年02月13日
    浏览(46)
  • (3)【Python数据分析进阶】Machine-Learning模型与算法应用-线性回归与逻辑回归

    目录 一、Linear Regression线性回归应用 一元一次线性回归公式及解析 应用案例(一)——自定义数据(Custom data) 1、下载安装sklearn库 2、导入库函数 3、加载数据集 4、创建线性回归对象 5、模型训练 6、预测结果 7、绘制模型图像 8、应用模型进行预测 9、评估指标 应用案例(

    2024年01月24日
    浏览(52)
  • 鲍鱼数据集案例分析-预测鲍鱼年龄(线性回归/梯度下降法实操)

    数据集来源UCI Machine Learning Repository: Abalone Data Set 目录 一、数据集探索性分析 二、鲍鱼数据预处理 1.对sex特征进行OneHot编码,便于后续模型纳入哑变量 2.添加取值为1的特征 3. 计算鲍鱼的真实年龄 4.筛选特征 5. 将鲍鱼数据集划分为训练集和测试集 三、实现线性回归和岭回归

    2024年02月08日
    浏览(78)
  • 大数据分析案例-基于多元线性回归算法构建广告投放收益模型

      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞👍🏻 收藏 📂加关注+ 目录 1.项目背景 2.项目简介 2.1

    2024年02月03日
    浏览(53)
  • 利用python实现多元线性回归

    本文介绍了如何用python进行回归分析 直线回归分析是研究两变量(自变量和因变量)之间的依存关系及其关系的具体方程的形式。分析中所形成的这种关系式称为回归模型,其中以一条直线方程表明的两个变量的依存关系的模型叫一元线性回归模型。 一元线性回归模型研究

    2024年02月11日
    浏览(36)
  • 机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

    随机梯度下降(SGD)也称为增量梯度下降,是一种迭代方法,用于优化可微分目标函数。该方法通过在小批量数据上计算损失函数的梯度而迭代地更新权重与偏置项。SGD在高度非凸的损失表面上远远超越了朴素梯度下降法,这种简单的爬山法技术已经主导了现代的非凸优化。

    2024年02月03日
    浏览(54)
  • 数据分享|R语言用lme4多层次(混合效应)广义线性模型(GLM),逻辑回归分析教育留级调查数据...

    本教程为读者提供了使用频率学派的广义线性模型(GLM)的基本介绍。具体来说,本教程重点介绍逻辑回归在二元结果和计数/比例结果情况下的使用,以及模型评估的方法 ( 点击文末“阅读原文”获取完整 代码数据 )。 本教程使用教育数据例子进行模型的应用。此外,本

    2024年02月16日
    浏览(43)
  • 使用Statsmodel进行假设检验和线性回归

    如果你使用 Python 处理数据,你可能听说过 statsmodel 库。Statsmodels 是一个 Python 模块,它提供各种统计模型和函数来探索、分析和可视化数据。该库广泛用于学术研究、金融和数据科学。在本文中,我们将介绍 statsmodel 库的基础知识、如何使用它以及它的好处。 Statsmodels 是一

    2024年02月02日
    浏览(27)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包