python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

这篇具有很好参考价值的文章主要介绍了python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码

一、前言

今天的低价单孔摄像机(照相机)会给图像带来很多畸变。畸变主要有两
种:径向畸变和切想畸变。如下图所示,用红色直线将棋盘的两个边标注出来,
但是你会发现棋盘的边界并不和红线重合。所有我们认为应该是直线的也都凸
出来了。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

在 3D 相关应用中,必须要先校正这些畸变。为了找到这些纠正参数,我们必
须要提供一些包含明显图案模式的样本图片(比如说棋盘)。我们可以在上面找
到一些特殊点(如棋盘的四个角点)。我们起到这些特殊点在图片中的位置以及
它们的真是位置。有了这些信息,我们就可以使用数学方法求解畸变系数。这
就是整个故事的摘要了。为了得到更好的结果,我们至少需要 10 个这样的图
案模式。

二、获取待标定的摄像头拍摄带棋盘图的图片

1、运行生成棋盘图的程序:

import cv2
import numpy as np

# 定义棋盘格的尺寸
size = 140
# 定义标定板尺寸
boardx = size * 10
boardy = size * 10

canvas = np.zeros((boardy, boardx, 1), np.uint8) # 创建画布
for i in range(0, boardx):
    for j in range(0, boardy):
        if (int(i/size) + int(j/size)) % 2 != 0: # 判定是否为奇数格
            canvas[j, i] = 255
cv2.imwrite("./chessboard.png", canvas)

生成结果如下:

python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

2、打印图片并张贴至平板上

将棋盘图用A4纸打印,并将将A4纸贴到一个很平的板子上固定好
例子如下:
有钱的大佬,可以直接买标定板。
注意,如果是打印的棋盘格一定要贴平,不然标定不准确
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

3、拍摄畸变图像

使用相机从不同角度,不同位置拍摄(15-20)张标定图。类似这样的:

python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

python调用opencv相机拍照代码(例):


import cv2
camera = cv2.VideoCapture(0)
i = 0
ret, img = camera.read()
print('输入j,下载当前图片')
print('输入q,终止程序')
while ret:

    cv2.imshow('img', img)
    ret, img = camera.read()

    if cv2.waitKey(1) & 0xFF == ord('j'):  # 按j保存一张图片
        i += 1
        firename = str('./img' + str(i) + '.jpg')
        cv2.imwrite(firename, img)
        print('写入:', firename)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cv2.release()
cv2.destroyAllWindows()

按j拍摄图片,将会按照顺序批量保存,按q退出程序。

三、相机标定程序流程及相关原理解释

注:该部分只起解释作用并无实际操作,正式操作可以跳过直接执行第四步

1、利用opencv寻找棋盘

为了找到棋盘的图案,我们要使用函数 cv2.findChessboardCorners()。
我们还需要传入图案的类型,比如说 8x8 的格子或 5x5 的格子等。在本例中
我们使用的9×6 的格子。(通常情况下棋盘都是 8x8 或者 7x7)。它会返
回角点,如果得到图像的话返回值类型(Retval)就会是 True。这些角点会
按顺序排列(从左到右,从上到下)

这个函数可能不会找出所有图像中应有的图案。所以一个好的方法是编
写代码,启动摄像机并在每一帧中检查是否有应有的图案。在我们获得图案之后我们要找到角点并把它们保存成一个列表。在读取下一帧图像之前要设置一定的间隔,这样我们就有足够的时间调整棋盘的方向。继续这个过程直到我们得到足够多好的图案。就算是我们举得这个例子,在所有的14 幅图像中也不知道有几幅是好的。所以我们要读取每一张图像从其中找到好的能用的。

除 了 使 用 棋 盘 之 外, 我 们 还 可 以 使 用 环 形 格 子, 但 是 要 使 用 函 数
cv2.findCirclesGrid() 来找图案。据说使用环形格子只需要很少的图像 就可以了。

在找到这些角点之后我们可以使用函数 cv2.cornerSubPix() 增加准确
度。我们使用函数 cv2.drawChessboardCorners() 绘制图案。所有的这
些步骤都被包含在下面的代码中了:

python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

2、标定

在得到了这些对象点和图像点之后,我们已经准备好来做摄像机标定了。
我们要使用的函数是 cv2.calibrateCamera()。它会返回摄像机矩阵,畸
变系数,旋转和变换向量等。

3、畸变矫正

现在我们找到我们想要的东西了,我们可以找到一幅图像来对他进行校正
了。OpenCV 提供了两种方法,我们都学习一下。不过在那之前我们可以使用
从函数 cv2.getOptimalNewCameraMatrix() 得到的自由缩放系数对摄
像机矩阵进行优化。如果缩放系数 alpha = 0,返回的非畸变图像会带有最少量
的不想要的像素。它甚至有可能在图像角点去除一些像素。如果 alpha = 1,所
有的像素都会被返回,还有一些黑图像。它还会返回一个 ROI 图像,我们可以
用来对结果进行裁剪。

函数:cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))中参数1是个坑,

这里我们使用cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),0,(w,h))参数设置为0

4 、畸变到非畸变
下面代码中

  • dst1图像使用的是 cv2.undistort() 这是最简单的方法。只需使用这个函数和上边得到的 ROI 对结果进行裁剪

  • dst2图像使用的是remapping 这应该属于“曲线救国”了。首先我们要找到从畸变图像到非畸变图像的映射方程。再使用重映射方程。(代码中有详细用法)

两种效果可以自行对比看看

纠正前后对比:
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

5、反向投影误差

我们可以利用反向投影误差对我们找到的参数的准确性进行估计。得到的
结果越接近 0 越好。有了内部参数,畸变参数和旋转变换矩阵,我们就可以使
用 cv2.projectPoints() 将对象点转换到图像点。然后就可以计算变换得到
图像与角点检测算法的绝对差了。然后我们计算所有标定图像的误差平均值。

(但是本文不需要,所以没有将其写入)

四、相机标定程序

目的:获取相机修正畸变后的内参

1、配置环境

a、安装opencv-python
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple/
b、安装glob
pip install glob2 -i https://pypi.tuna.tsinghua.edu.cn/simple/

2、运行程序获取内参

import cv2
import numpy as np
import glob



# 找棋盘格角点
# 设置寻找亚像素角点的参数,采用的停止准则是最大循环次数30和最大误差容限0.001
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # 阈值

#棋盘格模板规格
w = 9   # 10 - 1  
h = 9   # 10  - 1

# 世界坐标系中的棋盘格点,例如(0,0,0), (1,0,0), (2,0,0) ....,(8,5,0),去掉Z坐标,记为二维矩阵
objp = np.zeros((w*h,3), np.float32)
objp[:,:2] = np.mgrid[0:w,0:h].T.reshape(-1,2)
objp = objp*18.1  # 18.1 mm

# 储存棋盘格角点的世界坐标和图像坐标对
objpoints = [] # 在世界坐标系中的三维点
imgpoints = [] # 在图像平面的二维点
#加载pic文件夹下所有的jpg图像
images = glob.glob('./*.jpg')  #   拍摄的十几张棋盘图片所在目录

i=0
for fname in images:

    img = cv2.imread(fname)
    # 获取画面中心点
    #获取图像的长宽
    h1, w1 = img.shape[0], img.shape[1]
    gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    u, v = img.shape[:2]
    # 找到棋盘格角点
    ret, corners = cv2.findChessboardCorners(gray, (w,h),None)
    # 如果找到足够点对,将其存储起来
    if ret == True:
        print("i:", i)
        i = i+1
        # 在原角点的基础上寻找亚像素角点
        cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
        #追加进入世界三维点和平面二维点中
        objpoints.append(objp)
        imgpoints.append(corners)
        # 将角点在图像上显示
        cv2.drawChessboardCorners(img, (w,h), corners, ret)
        cv2.namedWindow('findCorners', cv2.WINDOW_NORMAL)
        cv2.resizeWindow('findCorners', 640, 480)
        cv2.imshow('findCorners',img)
        cv2.waitKey(200)
cv2.destroyAllWindows()
#%% 标定
print('正在计算')
#标定
ret, mtx, dist, rvecs, tvecs = \
    cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)


print("ret:",ret  )
print("mtx:\n",mtx)      # 内参数矩阵
print("dist畸变值:\n",dist   )   # 畸变系数   distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print("rvecs旋转(向量)外参:\n",rvecs)   # 旋转向量  # 外参数
print("tvecs平移(向量)外参:\n",tvecs  )  # 平移向量  # 外参数
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (u, v), 0, (u, v))
print('newcameramtx外参',newcameramtx)
#打开摄像机
camera=cv2.VideoCapture(0)
while True:
    (grabbed,frame)=camera.read()
    h1, w1 = frame.shape[:2]
    newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (u, v), 0, (u, v))
    # 纠正畸变
    dst1 = cv2.undistort(frame, mtx, dist, None, newcameramtx)
    #dst2 = cv2.undistort(frame, mtx, dist, None, newcameramtx)
    mapx,mapy=cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w1,h1),5)
    dst2=cv2.remap(frame,mapx,mapy,cv2.INTER_LINEAR)
    # 裁剪图像,输出纠正畸变以后的图片
    x, y, w1, h1 = roi
    dst1 = dst1[y:y + h1, x:x + w1]

    #cv2.imshow('frame',dst2)
    #cv2.imshow('dst1',dst1)
    cv2.imshow('dst2', dst2)
    if cv2.waitKey(1) & 0xFF == ord('q'):  # 按q保存一张图片
        cv2.imwrite("../u4/frame.jpg", dst1)
        break

camera.release()
cv2.destroyAllWindows()

代码放到图片相同的文件夹直接运行即可
运行结果如下:
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)

五、根据上一步获取的内参修正相机

python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
上一个程序可以运行得到畸变内参,将mtx值保存在k,
将dist保存在d

注:复制的时候,数组内部需要手动加一下逗号

1、视频程序

import cv2 as cv
import numpy as np

def undistort(frame):

	k=np.array( [[408.96873567 ,  0.         ,329.01126845],
 [  0.       ,  409.20308599 ,244.73617469],
 [  0.       ,    0.       ,    1.        ]])

	d=np.array([-0.33880708 , 0.16416173 ,-0.00039069 ,-0.00056267 ,-0.056967  ])
	h,w=frame.shape[:2]
	mapx,mapy=cv.initUndistortRectifyMap(k,d,None,k,(w,h),5)
	return cv.remap(frame,mapx,mapy,cv.INTER_LINEAR)

cap=cv.VideoCapture(0)# 换成要打开的摄像头编号
ret,frame=cap.read()
while ret:
	cv.imshow('later',frame)
	cv.imshow('img',undistort(frame))
	ret,frame=cap.read()
	if cv.waitKey(1)&0xff==27:
		break

cap.release()
cv.destroyAllWindows()

2、纠正结果

效果对比
纠正前后:

python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
可以看到,畸变被纠正的差不多了。
畸变这个程序运行一次即可,之后的话,在摄像头每次获取图像的时候都加上上面那个即可文章来源地址https://www.toymoban.com/news/detail-458281.html

到了这里,关于python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python之OpenCV相机标定

    本文结合OpenCV官方样例,对官方样例中的代码进行修改,使其能够正常运行,并对自己采集的数据进行实验和讲解。 OpenCV使用棋盘格板进行标定,如下图所示。为了标定相机,我们需要输入一系列三维点和它们对应的二维图像点。在黑白相间的棋盘格上,二维图像点很容易通

    2024年02月03日
    浏览(32)
  • python opencv实现相机内参标定

    使用python opencv 标定相机内参。 (1)从网络上下载一张棋盘格图片,粘贴到word文档上,设定尺寸大小为合适值,作为标定板。 (2)在不同距离,不同角度下用手机相机拍摄棋盘图片。 (3)调用 opencv findChessboardCorners 和 cornerSubPix 函数提取棋盘的角点。 (4)调用 opencv cal

    2024年02月13日
    浏览(36)
  • Python OpenCV 单目相机标定、坐标转换相关代码(包括鱼眼相机)

      本文不讲原理,只关注代码,有很多博客是讲原理的,但是代码最多到畸变矫正就结束了,实际上就是到 OpenCV 官方示例涉及的部分。   在官方示例中使用黑白棋盘格求解了相机的内外参和畸变系数,并对图像做了畸变矫正,但在实际使用时还缺少很多功能,以下是本

    2024年02月02日
    浏览(23)
  • 【OpenCv】相机标定介绍及python/c++实现

    之前有一个项目需要公司标内参,之前对这方面没有接触过,网上找了很多资料,记录下相机标定的基础知识。文章是个人浅显理解。如有错误还请指正,非常感谢! 参考链接: 坐标系转换:相机参数标定(camera calibration)及标定结果如何使用_Aoulun的博客-CSDN博客 标定ope

    2024年02月15日
    浏览(28)
  • 相机标定原理与实战【python-opencv】

    相机的功能就是将真实的三维世界拍摄形成二维的图片。所以可以将相机成像的过程看做一个函数,输入是一个三维的场景,输出是二维的图片。但是,当我们想将二维的图片反映射成三维场景时,很明显,我们无法仅通过一张二维图来得到真实的三维场景。也就是说,上述

    2024年02月09日
    浏览(51)
  • OpenCV-Python相机标定:Camera Calibration

    在使用相机拍照片时,大多数人会考虑拍的好不好看,关注相机中物体坐标的并不多,但是对于地信学科来说,如果能从照片中获取物体的真实位置,对地理信息获取大有帮助,在这里面,十分关键的一步就是相机标定。 相机标定的基本原理也是相对简单的,看官网中的一个

    2024年02月09日
    浏览(45)
  • opencv进行双目标定以及极线校正 python代码

    参考博客 OpenCV相机标定全过程 [OpenCV实战]38 基于OpenCV的相机标定 opencv立体标定函数 stereoCalibrate() 将打印的结果保存到标定文件中即可 参考博客 机器视觉学习笔记(8)——基于OpenCV的Bouguet立体校正 小白视角之Bouguet双目立体校正原理 校正前 左图 右图 校正后

    2024年02月11日
    浏览(27)
  • OpenCV基础(28)使用OpenCV进行摄像机标定Python和C++

    摄像头是机器人、监控、太空探索、社交媒体、工业自动化甚至娱乐业等多个领域不可或缺的一部分。 对于许多应用,必须了解相机的参数才能有效地将其用作视觉传感器。 在这篇文章中,您将了解相机校准所涉及的步骤及其意义。 我们还共享 C++ 和 Python 代码以及棋盘图案

    2024年02月04日
    浏览(26)
  • 相机标定,内参数与外参数

    所谓的相机标定就是将外界世界的坐标信息转化为计算机(自带相机/摄像头)可以理解的“距离”,将世界坐标系转换到相机坐标系。我们可以理解为从一个坐标系转换到另一个坐标系所需要的转换关系就是相机标定。 简单滴说:A=F(B),其中F()就是相机标定要做的工作。 其

    2024年02月09日
    浏览(33)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包