0. 前言
本人比较痴迷于硬件方向,最近得到老师的支持,从老师手里借到一块Nvidia Jetson nano 的板子(狂喜),下文简述nano。刚拿到板子经过已经完成点灯的操作,老师指示点完灯可以配置opencv的环境,前往图像处理的指示海洋。而配置opencv的过程曲折而痛苦,这里主要总结并分享配置过程及踩坑、填坑的起起伏伏。
0.1 Jetson Nano简介
Jetson Nano是一款体积小巧、功能强大的人工智能嵌入式开发板,于2019年3月由英伟达推出。预装Ubuntu 18.04LTS系统,搭载英伟达研发的128核Maxwell GPU,可以快速将AI技术落地并应用于各种智能设备。相比于Jetson之前的几款产品(Jetson TK1、Jetson TX1、Jetson TX2、Jetson Xavier),Jetson Nano售价仅需99美元,大幅减少了人工智能终端的研发成本。因此,一经推出,便受到了广泛的关注
以下是nano的几点优势:
(1) 体型小巧,性能强大,价格实惠,整体采用类似树莓派的硬件设计,支持一系列流行的AI框架,并且英伟达投入了大量的研发精力为其打造了与之配套的Jetpack SDK开发包,通过该开发包可以使学习和开发AI产品变得更加简单和便捷。
(2) 专为AI而设计,性能相比树莓派更强大,搭载四核Cortex-A57处理器,128核Maxwell GPU及4GB LPDDR内存,可为机器人终端、工业视觉终端带来足够的AI算力。
(3) 可提供472 GFLOP,支持高分辨率传感器,可以并行处理多个传感器,并可在每个传感器流上运行多个现代神经网络。
(4) 支持英伟达的NVIDIA JetPack组件包,其中包括用于深度学习、计算机视觉、GPU计算、多媒体处理等的板级支持包,CUDA,cuDNN和TensorRT软件库。
(5) 支持一系列流行的AI框架和算法,比如TensorFlow,PyTorch,Caffe / Caffe2,Keras,MXNet等,使得开发人员能够简单快速的将AI模型和框架集成到产品中,轻松实现图像识别,目标检测,姿势估计,语义分割,视频增强和智能分析等强大功能。文章来源:https://www.toymoban.com/news/detail-458375.html
说了一通,其实是跑边缘计算太贵的1080Ti等PC显卡咱买不起,而nano这样的单板计算机体积小还自带GUP,简直是大众福音。
————————————————文章来源地址https://www.toymoban.com/news/detail-458375.html
到了这里,关于Jetson nano裸机介绍及 Opencv的环境配置的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!